AFRL—IF-RS—TR—ZOOO-ISI
| Final Technical Report
October 2000

PROCESSOR-IN-MEMORY APPLICATIONS
ASSESSMENT

SM&A Corporation

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. G435

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

DTIC QUALITY INAELRID 4

20010215 135

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE
ROME RESEARCH SITE
ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical

Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2000-151 has been reviewed and is approved for publication.

APPROVED: ﬁ T / 7;4’

CHRISTOPHER J. FLYNN
Project Engineer

FOR THE DIRECTOR: 0%) /QJ L

NORTHRUP FOWLER, Technical Advisor
Information Technology Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTC, 26 Electronic Pky, Rome, NY 13441-4514.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

PROCESSOR-IN-MEMORY APPLICATIONS ASSESSMENT

Joseph F. Musmanno,
Joseph W. Manke, and
Jon W. Harris

Contractor: SM&A Corporation

Contract Number: F30602-97-D-0070/Task 0003

Effective Date of Contract: 27 May 1998

Contract Expiration Date: 27 May 1999

Short Title of Work: Processor-In-Memory Applications
Assessment

Period of Work Covered: May 98 - May 99

Principal Investigator: Joseph F. Musmanno
Phone: (781) 890-4200
AFRL Project Engineer: ~ Christopher J. Flynn
Phone: (315) 330-3249

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION
UNLIMITED.

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was monitored
by Christopher J. Flynn, AFRL/AIFTC, 26 Electronic Pky, Rome, NY.

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704.0188

Public reporting burden for this collection of information is estimated to avacage 1 hour par response, including the time for reviewing instructions, ssarching existing data sources, gathering and maintaining the data nesded, and completing end reviewing
the collecton of mformation. Send comments regarding this burden estimate of any other aspect of this coflection of information, including suggestions for reducing this burden, 1o Washington Headquarters Servicas, Dirsctorate for information
Dperations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arfington, VA 22202-4302, and to the Difice of Management and Budget, Papsrwork Reduction Project (0704-0188), Washmgton, DC 20503,

1. AGENCY USE ONLY /Leave biank/ 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
OCTOBER 2000 Final May 98 - May 99
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
PROCESSOR-IN-MEMORY APPLICATIONS ASSESSMENT C - F30602-97-D-0070/Task 0003
PE - 62301E
PR - 4384
6. AUTHOR(S) TA - QF
Joseph F. Musmanno, Joseph W. Manke, and Jon W. Harris WU - 01
5 PERFORMING ORGANIZATION NAME(S] AND ADDRESSIES) 8. PERFORMING ORGANIZATION
SM&A Corporation REPORT NUMBER
1300-B Floyd Avenue

Rome New York 13440-4600 SM&A Report #ONY-1801

S —
3. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSIES] 70, SPONSORING/MONITORING
Defense Advanced Research Projects Agency Air Force Research Laboratory/IFTC AGENCY REPORT NUMBER
3701 North Fairfax Drive 26 Electronic Pky

Arlington VA 22204-1714 Rome NY 134414514 AFRL-IF-RS-TR-2000-151

11. SUPPLEMENTARY NOTES
Air Force Research Laboratory Project Engineer: Christopher J. Flynn/ IFTC/(315) 330-3249

122, DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. ABSTRACT /Maximum 200 words)
This report presents a suite of application-oriented benchmarks, and the methodology supporting it. This document describes

the development of a benchmark suite that can be used to quantify the performance gains likely to be achieved for defense
computer programs when implemented using approaches and architecture developed under DARPA's Data Intensive Systems
(DIS) program.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Data Intensive Systems (DIS), Benchmark, Method of Moments (MoM), Synthetic Aperture 332
Radar (SAR), Fast Multiple Method (FMM) 16. PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

Standard Form 298 glev. 2-88) (EG)
Prescribed by ANS| Std. 238.18
Dasxgned using Perform Pro. WHS/DIOR, Oct 84

TABLE OF CONTENTS

Section Page
1. INTRODUGCTION ...coumviitetessesesseessescsssessssssssissatssssismssssssssassnasssassmssnssssasessssssaesss 1
1.1 Data-INENSiVe SYSLEMS . cu.cuuirimenrreesseessisrtisism st 1
1.2 IMLOTIVALION .. eveeeeeeereesercreresssseseserenssssrsseeas s ae e s s sh s e s e Rt s s s eSS bt 1
1.3 GORLS oo res e e eeeestese st e e ettt 1
14 Organization Of this DOCUMENTrwmrresmrmsersssimismsssssssmms s 3
2. BACKGROUND ...ovvvieneaessessiesesesssssaessssssssessasioss s ssss st shsss s sisasisesiose s 4
2.1 AlOrithm SElECHONorvvenrvesrerereeseriminsssssss s 4
22 AlOTIthim ANAIYSES ..covuevvessereessirnsssissmsssssssrssssesns s 4
7221 Method Of MOMENLS....cocrruiimmiiemsmrmnseresemstsnrnisssnssnssasissssss e 4
222 Simulated SAR Ray Tracing.....ccocoeeveressniimimimnesnssnisiiisssnsnenes 6
223 Image Understandingcoveeeereecssismmsimssmsssismssessiusnsssnssnsssessissenssnsess 10
724 Multidimensional Fourier Transform.......cccouieiinnrnnimiiinee: 12
2.2.5 Data Managementccoeereereremssimsmirmmmmsmes et 13
3. PROCEDURESoveveeeveestrestesasssssstsseessasassesassassstsasss e s st st st b s sttt 16
3.1 OVEIVIEW ..vrereveeeresseseassssasssessssessesensstasessaasssestsosssisssnsasas st s r s st 16
32 Benchmarking ProCedurecuuervereeerceissiemisininsiss s 16
33 IVIELTICS v.vvesvessesereeseessiseasesssesssesesessasossansasasesstesssshsmsanan st sasasam b se s s m et 17
3.3.1 MoM Benchmark MetriCs.....coeeninerresminniiimmnmnrentensissssmsnsiensssnes s 18
332 Simulated SAR Ray Tracing Benchmark Metricsc..oocoveenevcinenns 19
33.3 Image Understanding Benchmark MELTICS. .ceouvernrerrreneerasseessnersesees 19
33.4 Multidimensional Fourier Transform Metricsccovneisesusesnnseness 19
3.3.5 Data Management Benchmark Metrics.......cooenerenmiciiniimmisnisnneeees 19
34 Measurement PrOCEAUTESe.eeeeruermnrerimrereensisiniisisss s 20
35 SUDMISSION OFf RESUIS ...cvrerveveneireneiereriersnesnist s st 20
3.5.1 Required EIEMENtScovriiermmimnirniminmssineseesisssisssi s 20
3.6 CommMON Data TYPES ..ceevreerrrrerrersmssistmsessisssssmssssiss sttt 21
3.7 ATIthMEtiC PrECISION .vevvrvereeteerseeriairmesenrssssssssssssssssasneset st ssnases s s 23
4, SPECIFICATIONSvvevreseeeeseseasssensrssesssssasssens st ss s s sbs st 24
4.1 ADPPTOACK ... cenecvarrrremsssses s seess s 24
42 Benchmark SPeCifications......c.eweeeesrrusisscimmissssrssesssrsssisimnissss s 24
421 Method Of MOMENLES....c.cciiiriereraineeres it ssssnsisnss et 25
4.2.1.1 INPUL. ..eevn veeeenieicrentinsr s 27
42.1.1.1 Source Strength File ... 28
4.2.1.1.2 CUbE File oot as 28
4.2.1.1.3 Translation Operators.....ccoeenrieerisimnnnnsnssssrsisnnnsisens 29
4.2.1.2 Algorithmic Specificationc.oiermnsimsismsnsinsr e 29
42121 Field Generated by a Distribution of Scalar Sources 30
4.2.1.2.2 Multilevel Fast Multipole Method........ccooveniiicniinncnnee. 31

4.2.1.3

42.14

42.15

42.1.6
42.1.7
42.1.8
422

4221

4222

4223

4224

4225

42.2.6
4227
4228
4.2.2.9
423

4.23.1

4232

4.2.3.3
4234
4235
4.2.3.6
4.2.3.7
4238
4239

4.2.1.2.3 Translation Operationscccveuereerereceerererererereererennns 36

4.2.1.2.4 Spherical Harmonic Synthesis/Analysis.......c...ccccoveueen.. 39
OUIPUL ...ttt r et ss 42
4.2.1.3.1 Far-Fieldccoorimvnnnicnieereneee et 42
4.2.1.3.2 Metrics Report.......cccocuvmvemeverereeieececeeeereeeseee e 43
Acceptance TEStccoccvmiviirnieieinrnes e 43
4.2.14.1 Far-Field Reference........ccccceoeevvevrereeeeceeeeeeeereseeennas 43
4.2.1.42 Acceptance Test REpOrt.......cccccevvvvevereeeceeereeiiereeieians 44
MELTICS .ottt a e e 44
4.2.1.5.1 Performance..........cocuvvurueeeeerereeernreneeeseseseses e 44
4.2.1.5.2 Scalability With Respect to Problem Size...................... 46
4.2.1.5.3 Scalability With respect to Processorsc.c.ccceuennnas 46
Baseline Source Code........ccvvuevervrninneireneeseee e 46
Baseline Performance Figures..........cccoovuvreveeeveecrereressicsrenenennns 47
Test Data Sets.....cccuceriiiriircceeense et 47
Simulated SAR Ray Tracingcceeeeeeeereerrerirereriiereierenes e 47
INDUL ..ottt 48
4.2.2.1.1 Recursive Ray Tracer INput.........ccccoevvvvrererererererererenennes 48
4.2.2.1.2 Image Formation INPULScceceverererererernrnererererercrenenne. 58
Algorithmic Specificationc.ceeeererereieeeeeeeeee e 59
4.2.2.2.1 Recursive Ray Tracing Benchmark Algorithm
SPECIfICAtiONScevevvrrereeeeteestee et e 59
4.2.2.2.2 Image Formation Benchmark Algorithm Specifications 66
OULPUL ...ttt 69
4.2.2.3.1 Recursive Ray Tracing Benchmark Output.................... 69
4.2.2.3.2 Image Formation Benchmark Output........c.cccccvuvurncnene. 70
ACCEPLANCE TStevireirienieierrirenee e r et 70

4.2.2.4.1 Acceptance Test for Recursive Ray Tracer Benchmark. 70

MEITICS.....viuiniiiiricc sttt ettt sene 70
4.2.2.5.1 Metrics for Recursive Ray Tracer Benchmark............... 70
4.2.2.5.2 Metrics for the Image Formation Benchmark................ 70
Baseline Source Code.........ccvmmrmicnnrniineeee e 70
Bascline Performance Figures..........cocovoveererereeeveceienceceee e, 70
Test Data Sets......c.ocerrereierrrrrneeeeee e 71
RELEIENCESvvviriecieciet et 71
Image Understandingccoeevveiverrnrerenineeeeeeeee e 74
INPUL et 74
4.2.3.1.1 IMAZE V.ieitereceeeeeet ettt rene e 75
4.2.3.1.2 KeMEIS...oocertiiiereeereeeeeeetceeeee e erer et se e 76
Algorithmic Specificationccceeereevereereeeecc e 77
4.2.3.2.1 Morphological Filter........cccoovvvvermeceierrrerrrererererereverenne 77
4.2.3.2.2 ROI SeleCtioncccevmrrrereereererireiireiceeecereeeese s 78
4.2.3.2.3 Feature EXtractioncccevvveeeeevveenereirceesreeeeeenens 82
OUPUL ..ttt et r ettt st se e s 84
ACCEPLANCE TSt ...uiiiiiiicicccetrcee e 86
MELTICS ...ttt ettt r et st e eens 86
Baseline Source Code........oovuverirnenreeicteeecriecreerc e 86
Baseline Performance Figures.........coooovveueveereveeniereeereeeesseeseene 86
Test Data Sets.......cccvviieviriermneieiiinee ettt esee s 86
RETETENCEScvviieitreieeee ettt st 86

4.2.4 Multidimensional Fourier Transform.......cocooieiiimineneiin 87

4.2.4.1 TOPUL coorvereerercerereiress s sesssss st s s 87

4.2.4.2 Algorithmic SPecifiCation ... 89

4.2.8.3 OULPUL...cuovereeeceemsiesiserersinessss s sb s s 90

4.2.4.4 Acceptance TeSt ...t 91

A.2.8.5 MEITICS. cveiverrreereesisseesiarasesseseseesbesesssassasssessrssstaisaseraasnsssasssstessessns 91

4.2.4.6 Baseline Source Code.....oomirnmiininmmmmnenssiniisin s 91

4.2.47 Baseline Performance FIgures.......coceomrvnienscniimnneninnnnnien 91

4.2.4.8 Test Data SEIS....cciviierrecreriersiisesesssssrsssssss s s s e ssaesesssnisanss 91

4.2.8.9 REFETENCES cuveurererveniererreresessnseestssssiessaiansess e sseess s nasa s sassass s san s 92

42.5 Data Managementcooerrmerreresenccssmsisisisnsssssssansimiissssaseenss 92

4.2.5.1 TIPUL coorereeencerericrsiers s s s 93

42511 INitializationcoceeeeeeermiriisecnrinersnsresten e 96

4.2.5.1.2 TINSEIt erieiciieiierierireereeeetesresen e te s s st 96

42513 QUETY coveeeereccniisie e s 97

42518 DEIBIE .coeriiiricrereerreieeeerssnesris e et 97

4.2.5.2 Algorithmic SPeCifiCationcocemiiimrviimnmimerersecsin e 98

42.52.1 Data Object DeSCrpPtion......ccoeeriinimiismnenisenenssiisnnees 98

42522 ReTICC oiiirierecieeeseeereseeiestsnnrs s ssesss s s as st 98

42523 R-Tree Variants....ccceeerersinieneesiniesesssssssssinsisensses 102

4.2.5.3 OULPUL...vereeeeeecrianrrennssssssess st s s 102

4.2.5.4 Acceptance TStceremrmurrscrmiciiinnsisisrssssns s 103

4.2.5.5 IMELICS . coververereererereeriessseeraarasesseeestosanssnssasassessermstassnssssassassassonsssstass 103

4.2.5.6 Baseline SoUrce Code.....couurvrrniiiinieenriminreasennisnssinaeinssen s 103

4.2.5.7 Baseline Performance FIgUIEs.......cccoemiimninnncniniiiriienneicinens 103

4.2.5.8 TSt DAta SELS...oeciiviirrerrirerereressisiosrasiesmsssssessressnsnnmssanssnssessenss 103

4.2.5.9 REFEIEINCES 1eouvererirrerrresreerseraseererstestsossersstasesssstsasssissesiasssnasasessesaniass 103

5. CONTACT INFORMATIONocceeirmenieriiiseneristsnssesarsssssnasssssnsissssesassnsasasasenns 104

6. REFERENCES . .o e eteeeeeeeeetstetesesetesessesssssessesstssssssnsssassssansssssesssssasmsssssassntssssisssanasinss 104
Appendix A: DIS Benchmark Suite: Data Management Software Design.........c.couereuennee. A-1
Appendix B: DIS Benchmark Suite: Image Understanding Software Design............... B-1
Appendix C: DIS Benchmark C Style GUIE. .ottt eee e e ettt C-1

ii

LIST OF FIGURES

Figure Page
Figure 2-1: A typical geometry for airborne collection of SAR data relative to a specific ground

SIEE .ttt et b b b e s s s e bbbttt e e eeeseen e s enensneeenenntenen 7
Figure 2-2: Block diagram of the generalized physical optics SAR simulation...........ccevveene..... 8
Figure 2-3: Image Understanding SEQUENCE.c.vevveeieeeveeiereieitetsececeeeeneeere e eeeeneeeessesaesssesesens 10
Figure 4-1: Coarse Grid and SCAETETcccovurvevirrerieriictce ettt sen s e oo 30
Figure 4-2: Fine Grid and SCAterercccuovvviviviveieeiiei ettt e e e e neneneseseseseesaeseen 31
Figure 4-3: Outer-to-Outer Translation from Fine to Coarse Levelueeevveereereveeeeeeeeeeenns 34
Figure 4-4: Outer-to-Inner Translation at the Coarse Levelcoovvvieireveeeeeeeeeerseeeeeeesseees 35
Figure 4-5: Inner-to-Inner Translation from Fine Level to Coarse Level.........ccoeveevevvvvevererennnn. 35
Figure 4-6: Near-field Contributions at Fine LeVelooceiiireeveinieieieieenerereseesese e eesesenes 36
Figure 4-7: Outer-to-Inner Translation at FIne LeVEl.........cccvviuiuiuireierieeeeeeeeeeeeeeeesesseesessses 37
Figure 4-8. Solid Primitive DEfINIIONScvuviermieieeriieisiisieistseceseeeeeeeesesseseesesesessssesesesssens 56
Figure 4-9. Solid Primitive Definitions (COntinued)coveviveeiieecveiererereeeeeese e ereeereesssessens 57
Figure 4-10: Example .cg file 0f @ hollOW BOXcvcveveviveeieereiciceicrceeeetccec et 58
Figure 4-11: Supported CSG OPErators.........cceeueverererereeiereresisiteteesesesesesssssesstesssessenesesessssesses 63
Figure 4-12: CSG Operators on INtersection PAITSceeveveveveeeevieereieiieeecceeeeeesenesesees s ssseeees 64
Figure 4-13: Formation of the SAR IMageccooevverrierieeieeeeeererereeercercec et 67
Figure 4-14: SAR Mapping 0f REIUINS.cvviuiieeieecieceeteeereeeee ettt sttt eese e eneens 68
Figure 4-15: Image Understanding SEQUENCE.............vvvrmveriieerieiieteeeeetereteseseseesssessssseeeneeseses 74
Figure 4-16: Sample Image V with X columns and Y TOWS.........cvcueueeierircececieeeeeeeeeseeneeeeseenes 75
Figure 4-17: R-Tree 2D EXAMPIEccoovrieiuiuiiieiierecricecereeeecese sttt se e ese st een s 99
Figure 4-18: R-Tree Structure EXamPIEc.coviueuereieicicieeeceeeceree et se s seenes 100
FIGUIE 4-191 INSEIT ...oreiiiie ettt s et en et neneneeenenene 100
Figure 4-200 QUETY ..ottt et sttt es e e e e esesenessannns 101
FiGUre 4-21: DEIELEccoiiiiiriiniiirererereere et sttt st st e e e e s e ee s s 102
Figure A-1: Application EXecution FIOWccoceueeieveriueeiiesicciieeeeceereeesesee e eseeneeeeseseenenas A-4
Figure A-2: Modules and High-level Routing Hierarchyccoocevuiucecnevmeireeeeseeeenerenesesesenns A-5
Figure A-3: Detailed Application EXecUtion FIOWccoueuvviuiiniieieeeeeceeierereeeereneeseseseseensnns A-6
Figure A-4: Basic R-TTee StUCIUTESc.cocevererereirererereeetetee s s esesaser oo senseeseseseseesenenes A-10
Figure A-5: R-Tree Index SChematiC......cceueverueverueueeteeieee ettt ee A-11
Figure A-6: Insertion of Entry into INdeXccoeciveeiviveeceneeereese e A-12
Figure A-7: Split 0f Leaf NOGE......couveveriicieriirieeseecteee ettt et es e e s see s A-13
Figure A-8: New Index after Insert Command...........ccoeeueueeeemieinieeiireecsiseeceseeseeeneresesesesnenes A-14
Figure A-9: Insert Command Function Hierarchy..........coccoeveeieeeveneirereseeeec e A-14
Figure A-10: Insert Control FIOW DIiagramccocovvievreeruereierereneeeieeeieesecsonenesesesssessssassens A-15
Figure A-11: Insert Entry Control Flow Diagramccceeeeieeeeniveeeeeieesee s svonseeenne A-16
Figure A-12: Partition Entries EXample 1cocoivioiiiieiiiieneeeeeeeeessee e A-17
Figure A-13: Partition Entries EXample 2cccooireiiiiiiccceee et A-18
Figure A-14: Partition Entries EXample 3c.coooeiieeiicriccciecceeecr et see s esee e A-18
Figure A-15: Partition Entries EXample 4coovoiircioeveieiiiicieiececeerese et A-18
Figure A-16: Partition Entries EXample 5cccccoiiiiinnieniceeceee e A-19
Figure A-17: Partition Entries EXample 6ccccvveienirieeeieniieeceeceee v e A-19
Figure A-18: Query Command Functional Hierarchyccccceeevereieveceiicnceeeceer e A-20
Figure A-19: Query Control FIow Diagramcccececueeieieecrieeineerceecesreeceoreeeeene s A-21
Figure A-20: Deletion of Data Objects from INdeX........ccocveveeriveenririnieeceieireiesese e A-22
Figure A-21: Node REMOVAL.........cccviiriiiictnneneiintcentseesre et et eve e s s s ene s A-23

Figure A-22: Further Node ReMOVal......cc.ovimmiiiniiimmensnmsmssn s A-23
Figure A-23: Shrinking the INdex TIee......ccommmimmimmnriscnnisii e A-24
Figure A-24: Re-InSertion Of ERIYooomemerimisressecisssisssssmsisss st A-25
Figure A-25: New Index after Delete COMMAN. ..eveeeeeereiirrrsireseessreeenrsssesstsrasssnasessressesaisassanns A-25
Figure A-26: Delete Command Function 1§ (5 02105 1) 200U P TP ISR A-27
Figure A-27: Delete Entry Control Flow DIagramcoocoeerimimmssmmssimmecnssssnssemssssenssseesse A-28
Figure A-28: Delete Control FIow Diagraml.....coocuveeeueemsinimssimissssssnnsssenssssessssmssnss e A-29
Figure A-29: Input & Output Module Function Hierarchy.......coooeeivimvmmiennnininnneine A-33
Figure A-30: Metrics Module Function HIETArCHY ..voveveeecmiierretese s A-35
Figure B-1: Image Understanding SEQUENCEoovrvermvermissmmmisiiisssssissstnsn s B-2
Figure B-2: FUNCtion OVETVIEWcvuiimmmimisiisssiserissens s B-4
Figure B-3: Input & Output Module Function HIETarChy ..cooveeeerrerercieirinieesns et B-8
Figure B-4: Filtering Module Function HIErarchy....ooocvveveiimrinnnrress e B-10
Figure B-5: Select Regions Module Function Hierarchycccooeeenmmiseenniniennnnenens B-16
Figure B-6: Select Regions Module Flow DIETAM .ovecuernirirnsernesssrssersisssss st B-18
Figure B-7: computeFeatures FIOW DIagrall....coc.ovveeeeeiniensmmimissrmmssenssnss st B-19
Figure B-8: findConnection FIoW DIagraml......ciecuursieruemmisssmmmmisssssisssnni s B-20
Figure B-9: findObject FIoW DIagraml.......coueevuismessssirisssmisssnmmnsssis s s B-21
Figure B-10: mergeObject FIOW DIagraml.....c.uouirmnressenisisssimimssssssssssssnsssisssiss s B-22
Figure B-11: selectSubset FIOW DIagramooociiesssiemsiemninssnimimsisis s B-23
Figure B-12: Feature Extraction Module Function Hierarchy......cccooeovnnennnnninionnennacees B-25
Figure B-13: Feature Extraction Module Flow Diagram.........ccoeeenmmmmserennmnnninnsnsieessscssesae: B-28
Figure B-14: calculateDescriptors FIOW Chart ... B-29
Figure B-15: isPixelObject FIOW Chartoovuuimiimsiiiensssimininssis e B-30

LIST OF TABLES

Section PAGE
Table 4.2.3-1: File containing byte image V............coouviivieeeeee oo 76
Table 4.2.3-2: File Containing Unsigned Byte Kernel K.............c.oooveeevmmmeeioo 76
Table 4.2.3-3: Output Record Specification for Each ROL................oovvveivieeieei 85
Table 4.2.4-1: Fourier Transform Input SChematic.............c.oeueeuveieieee i 88
Table 4.2.4-2: Fourier Transform Input EXample............ocoeeeeveeeesveeeeoee s 88
Table 4.2.4-3: Fourier Transform Output SChematic............ocoeveveeeeeeeeess e 90
Table 4.2.5-1: Command OPerations.................ceeveiuumeumeeeeeeeess s 93
Table 4.2.5-2: Data ObJect TYPES....c.eeeuuuiiniiiieiie et oo e 94
Table 4.2.5-3: Attribute Codes and DeSCIiptions.................eeeeeeuviseeeeeoie e 95
Table A.1: Data OBJECt TYPES.......cceiiiiiiiiiiiiiiiiiiie et A-3
Table A-2: Command OPerations...................veeeeveueeeesseeeese oo A-30
Table A-3: Attribute Codes and DeSCHPHONS.eeereveveeieee e A-31
Table B-1: ObjectEntry Structure Definition................coueeveeeeree oo B-13
Table B-2: AliasEntry Structure Definition.................c.oooviveiuooeeeeeiiiieoe B-13
Table B-3: BoundingBox Structure Definition.covevveeroseoeeieee e B-14
Table B-4 Point Structure Definition.ovveiiiuuiieeeeiee oo B-14
Table B-5: SomeFeatures Structure Definition...................cooeeeeeerviioieeeiiie B-14
Table B-6: FeatureEntry Structure Definition...................ooovvneeiioiins o B-25
Table B-7: Descriptors Structure Definition.cuuunveeeeuineeeeeeoee e B-26
Table B-8: Angles Structure Definition..............oooooiiiiiii i B-26
Table B-9: MoreFeatures Structure Definition.ccooouuuuiiveeeiin e B-26

vi

1. INTRODUCTION

As part of the DARPA Information Technology Office’s Data-Intensive Systems research
program, this document presents a suite of application-oriented benchmarks, and the
methodology supporting it.

This section provides an introduction to the effort and the document, including an outline of
the motivation for the program, the goals to be sought, and the organization of the remaining
sections of the document.

1.1 DATA-INTENSIVE SYSTEMS

Many defense applications employ large data sets that are accessed non-contiguously.
These applications cannot take full advantage of typical memory-access optimizations, and
consequently perform at approximately two orders of magnitude below peak rates. Some data-
starved applications identified by DARPA/ITO are RADAR cross-section modeling, high-
definition imaging, terrain masking, relational and object-oriented databases, structural dynamics
calculations, and circuit simulation.

Compounding the problem, memory access speeds have also not grown in pace with storage
sizes, nor with processor speeds. '

To bolster the above applications and address these problems, DARPA/ITO has launched a
Data-Intensive Systems (DIS) effort, which includes two complimentary tasks: (1) incorporate
logic within memory chips (processor-in-memory, or PIM), allowing manipulation of data locally
in a memory subsystem; and (2) adaptive cache management, to increase cache utilization and
improve data flow.

1.2 MOTIVATION

The development of new architectures and approaches to data-intensive computing could be
‘beneficial to many problems of interest to DARPA. Evaluation of the architectures in the context
of those problems is essential in order to realize those benefits.

Equally important, the existence of simplified-but meaningful-programs derived from
defense applications can provide valuable input to the development process.

Therefore, benchmarking fills a critical need in the development of Data-Intensive Systems.
An appropriate benchmarking effort will accelerate insertion of DIS technology into defense
systems.

1.3 GOALS

The primary goal of this effort is the development of a benchmark suite that can be used to
quantify the performance gains likely to be achieved for defense computer programs when
implemented using approaches and architectures developed under the DIS program.

Any benchmark specification dealing with early research into new systems must remain
architecture-neutral. In support of this goal, the benchmark specifications are essentially only the

mathematical description of problems’ solutions. Of course, over years of development in the
context of Von Neumann computer architectures, many known optimizations have been utilized,
and an attempt has been made to provide or reference these, so that participants charged with
implementing the benchmarks are not faced with having to independently rediscover the
optimizations.

Benchmarks that focus on the measurement of relative performance frequently involve
implementation only of specific, isolated functions, resulting in accurate measurement of peak
performance. This level of performance is rarely realizable in general application, so benchmarks
that include the processes of data movement and preparation are desirable for a more generalized
measurement of real performance. Considering the variety of architectures under scrutiny in the
DIS program, it would be dangerous to presume that these “overhead” functions diminish in
proportional resource consumption as data sets grow larger. Therefore, avoidance of isolated
tasks as benchmarks is a goal of this program; rather, performance related to the interactions
between program components is intended to be included in the measurements.

[Weems], while reviewing lessons from prior benchmark efforts, points out:

“Having a known, correct solution for a benchmark is essential, since it is difficult to
compare the performance of architectures that produce different results. For example, suppose
architecture A performs a task in half the time of B, but A uses integer arithmetic while B uses
floating-point, and they obtain different results. Is A really twice as powerful as B?”

Therefore, a complete solution with test data sets is considered one of the essential
components of the distribution of the benchmark specification.

Although there are sometimes competing ideas about how to best solve a particular problem,
the goal of a benchmark is not specifically to solve a problem, but rather to test the performance
of different machines doing comparable work. Since DIS architectures are likely to vary greatly,
significant latitude is allowed in the implementation of a solution to benchmark problems.
However, participants must remain cognizant of the fact that ultimately, the measurements taken
must be meaningful in the context of defense problems, and specifically in the context of relative
gain. So, it is not a goal of this benchmark effort to develop the best solutions for the most
difficult problems; rather, it is a goal to employ pertinent solutions to problems expected to
benefit from DIS research, and allow enough flexibility to maximize individual performance, yet
remain consistent and comparable.

While benchmarks that are too simplistic do not offer valuable results, those that are too
complex are never implemented, at least in a meaningful way. Resources are limited, so ease of
implementation is a factor of consideration. It is a goal of this program to develop benchmark
programs that should require relatively little source code during implementation, yet still offer
meaningful results.

Often, high-performance systems are developed that remain under-utilized due to the
esoteric or difficult nature of their programming. Therefore, an important goal of this effort is to
evaluate the labor costs associated with use of candidate architectures. The ability to handle
existing, ‘legacy code’ is an important consideration, as is the labor cost to exploit the powerful
features of these systems.

A program will generally execute faster when its required data set is small enough to fit in
main memory, as opposed to when paging or swapping is required. Likewise, when the data set

is small enough to fit in cached memory, it will generally execute faster still. Balancing the
competing factors of speed, size, and cost is a major engineering decision, and quantifying the
effects of that decision is a goal of this effort.

Finally, in support of the primary goal of being able to quantify performance gains, it is a
goal of this effort to remain open to any additional information participants wish to supply that
will assist reviewers in making an accurate determination. While this document specifies

minimum participation requirements, information such as results, analyses, proofs, or additional
metrics is hereby solicited.

1.4 ORGANIZATION OF THIS DOCUMENT
The remainder of this document is organized as follows:

Section 2 provides the foundation for this work, including analyses of the algorithms
included in the benchmark.

Section 3 outlines the procedures to be followed by participants.
Section 4 provides the specifications for the benchmark set.

Sections 4 and 5 give contact information and references, for participants needing additional
information.

2. BACKGROUND

Given the motivation and goals outlined above, this section addresses the determination of
the content of the benchmark suite. The selection of the algorithms to be included, and analyses
of each-showing critical performance bottlenecks and suggesting possible gains—are provided.

2.1 ALGORITHM SELECTION

Although many classes of algorithms could benefit from systems with advanced memory or
PIM elements, three classes would provide a representative scope of achievable performance
improvement for problems of interest to key DARPA programs:

Model-Based Image Generation — This class includes generation of synthetic signatures and
scenes for targets and terrain based on complex models of objects and sophisticated camera
models for various sensor types. Applications include target recognition, real-time scene
simulation for visualization or training, and model-driven change detection.

Target Detection — This class includes spatial- and frequency-domain target detection in
scenes collected from a wide range of sensor types. Applications include automated exploitation
and cueing systems.

Database Management — This class includes algorithms for index maintenance, storage
management, and content-based query processing. Applications include sensor data archive
management and geographic information systems such as the Dynamic Database for Battlefield
Situation Awareness.

From these classes, five algorithms were selected-two from Model-Based Image Generation,
two from Target Detection, and one from Database Management. Analyses of these algorithms
which suggest their possible performance gains are included below.

2.2 ALGORITHM ANALYSES

Each of the selected applications was analyzed, with a specific interest in the identification
of computational bottlenecks in the algorithms and potential performance improvements offered
by DIS architectures. Fragments of the algorithms suitable for benchmark implementation were
identified, and from these the specifications found in Section 4 of this document. The remainder
of this section presents individual analyses of the five selected algorithms.

2.2.1 Method of Moments

The first class of algorithms chosen for inclusion in the DIS benchmark suite are Method
of Moments (MoM) algorithms, which are frequency domain techniques for computing the
electromagnetic scattering from complex objects. MoM algorithms require the solution of large
dense linear systems of equations. Traditionally, MoM algorithms have employed direct linear
equation solvers for these systems. The high computational complexity of the direct solver
approach has limited MoM algorithms to low frequency problems. Recently, fast solvers have
been introduced which have low computational complexity. The potential of these fast solvers to
enable MoM algorithms to solve larger problems at higher frequencies is ultimately limited by the
speed of main memory. Thus, fast MoM algorithms may benefit from the Data-Intensive
Systems research effort.

In MoM algorithms the integral equation form of the Helmholtz equation is discretized by
expanding the surface currents induced by the applied excitation in N basis functions. Then N test
functions are used to convert the integral equation to a dense linear NxN system that takes the
form Z *J = V. Generally, N increases as the square of the frequency, and for typical problems,
N is greater than 10,000. In traditional MoM algorithms, which first appeared in the late1960’s,
the dense linear system Z *J = V is solved by a direct linear equation solution algorithm, which
may be composed as an in-core or out-of-core solver. On modern parallel computers, the direct
solvers may be extended to work on shared or distributed-memory architectures.

The advantage of MoM algorithms is that they are exact representations of Maxwell’s
equations and highly accurate simulations are possible. The disadvantage of the traditional MoM
algorithms is that the methods are computationally intensive, especially as the frequency goes up.
The computational complexity of traditional MoM algorithms includes ON?) integral evaluations
to compute the matrix Z and ON?) arithmetic operations to solve the system Z «J = V for J. The
memory requirement for traditional MoM algorithms is ON’). For these reasons, the traditional
MoM algorithms are generally used only for low frequency problems. Although traditional MoM
algorithms have been highly optimized on a variety of high-performance computing machines,
the largest problems solved so far are for N on the order of 100,000.

Recently, new fast MoM algorithms based on fast, iterative linear equation solvers have
been introduced. The iterative solvers rely on numerically stable and rapidly converging iteration
procedures, such as the preconditioned GMRES method [Saad]. Fast matrix-vector multiply
algorithms are used to compute products of the form Z * X used in the iterative procedure. The
computational complexity of the fast MoM algorithms is O/NlogN). The memory requirement
for the fast MoM algorithms is ON). This is a remarkable reduction from the aN)
computational complexity of the traditional MoM algorithms, and potentially, allows the solution
of much larger problems at higher frequencies.

Rohklin [Rohklin-1, Rohklin-2] has introduced new fast MoM algorithms for the
Helmholtz equation, which use iterative linear equation solvers and the fast multipole method
(FMM) for fast matrix-vector multiplies. To compute products of the form Z « X, the Z matrix is
not formed or stored, rather the product Z « X is viewed as a field and approximately evaluated by

the FMM. The mathematical formulation of the FMM is based on the theory multipole

expansions and involves translation (change of center) of multipole expansions and spherical
harmonic filtering. The computational complexity of these new methods is (/NlogN) and the
memory requirement is AN).

Building on the FMM approach, Dembart, Epton and Yip [Dembart-1 to 4] at Boeing have
implemented a fast MoM algorithm in a production grade electromagnetics code used by the
company for radar cross-section (RCS) studies. Problems for which the number of unknowns is
on the order of 10,000,000 have been solved with this code. Boeing’s fast solver uses the
preconditioned GMRES iterative method, which requires only the calculation of products of the
form Z + X, combined with a multilevel FMM for fast matrix-vector multiplies.

The potential of the fast MoM algorithms to solve larger problems at higher frequencies,
which results from their low computational complexity, is impacted by two memory bottlenecks
encountered by fast solvers: low reuse of data and non-unit stride memory access.

We introduce the issue of low reuse of data by first considering the direct solvers used in

the traditional MoM algorithms. Since the computational complexity is AN’ and the memory

requirement is GYN°) for direct solvers, the ratio of computation to data access is OfN). For
typical problems solved by the traditional MoM algorithms, where N is greater than 10,000, data
reuse is high. When data reuse is high, cache is an effective tool for enhancing processor
performance. The direct solver, in-core or out-of-core, can be organized so that a block of data is
placed in cache and then reused from cache. This effective use of cache makes the computer
perform as if all the memory is as fast as the cache memory. Similarly, direct solvers can be
optimized for shared- or distributed-memory architectures.

For the fast MoM algorithms, where the computational complexity is (YNlogN) and the
memory requirement is (YN), the ratio of computation to data access is CklogN). Indeed,
implementation of Rohklin’s translation theorems shows that for the translation operations, which
are key to the FMM, the ratio of memory access to computation is 3-to-1. Thus, cache cannot be
used to enhance processor performance, and the speed of fast MoM algorithms is ultimately
limited by the speed of main memory.

In addition to the bottleneck resulting from the low reuse of data, fast solvers based on the
FMM face a second memory related bottleneck. The FMM relies on the numerical
implementation of spherical harmonic filtering. The filter operates on rectangular arrays of data
in three stages. The arrays are accessed first by rows, then by columns, and finally, by rows
again. In the second stage, it is necessary to access memory locations that are not consecutive.
Thus, the speed of the fast MoM algorithms based on the FMM is ultimately limited by the speed
of accessing main memory with non-unit stride.

Fast MoM algorithms, based on efficient iterative linear equation solvers, have the
potential to compute the electromagnetic scattering from complex objects at frequencies 10 to
100 times higher than possible with traditional MoM algorithms. As pointed out above, the
ultimate potential of these fast MoM algorithms is limited by two memory-related bottlenecks:
low reuse of data and non-unit stride. For these reasons we have chosen to use Boeing’s fast
solver, based the preconditioned GMRES iteration method and the FMM for fast matrix-vector
multiplies, as the basis for the Method of Moments Benchmark. The key FMM kermnels
represented in the benchmark are the translation operations and spherical harmonic filtering.

2.2.2 Simulated SAR Ray Tracing

The simulation of Synthetic Aperture Radar (SAR) provides a cost-effective alternative to
real data collections. In contrast to deployed sensors systems, whose operational parameters are
fixed, computer simulations allow continuous variation of system and scene parameters. They
have been used to simulate the performance of hypothetical sensors systems and to predict the
signature of targets from a large number viewing angles as well as target signature that are
inaccessible. These simulated target signatures have been used to design, test, and have been
included as part of ATR systems.

Phenomenological models of targets and backgrounds and their interactions are the
theoretical foundation of the computer simulations. For example, both image-domain and phase-
history-domain approaches have been used to simulate synthetic aperture radar (SAR). The
image domain approach uses a generalization of the physical optics approximation to compute
target scattering. Such an approach is very amenable to use with a solid geometry target model
sampled by ray casting. The phase history domain approach uses a variety of methods to
compute target scattering: physical optics (PO), physical theory of diffraction (PTD), method of
moments (MoM), and others. Hybrid implementations of these two methods have also been

developed. The SAR simulation method analyzed for this benchmark is based on the image
domain approach.

kz
ky
kx
Aperture generated by motion of platform Planar,uniformly sampled data surface
SPATIAL DOMAIN SPATIAL FREQUENCY DOMAIN

Figure 2-1: A typical geometry for airborne collection of SAR data relative to a specific
ground site

A typical SAR collection geometry is illustrated in Figure 2-1. Assume far field conditions
and a narrow-band signal. Let o and P denote, respectively, the receive and transmit
polarizations of the radar, u(?) the transmitted waveform, and y(r') the so-called SAR reflectivity
of the scene. The radar return signal is generally represented as

Vg @) = K [, il =22)is'

where S is the illuminated portion of the scene, R = |r -1 | is the distance from the radar to the
point r' on S, ¢ is the speed of light and K is a system constant. In essence, the model is based on
the argument that the return from a differential surface element ds’, located at r', is a replica of the
transmitted signal. This signal is delayed in time by the two-way propagation time from the radar
to ' and back, and modified by the reflectivity of the surface element. It can be shown that such a
model is consistent with physical optics, and an explicit formula for y can be obtained.

Tt is customary to demodulate v(f) by mixing with a reference signal A(f), yielding
s(t) = h(HV(D)
Let I'(f) denote the spatial Fourier transform of y(r):

I(f) =3{y (0}

A single range record s(2) can be interpreted as corresponding to the values of I'(f) over a
radial line segment in the spatial frequency domain. The complete record of s(z) for a sequence of
pulses transmitted and received at positions along the platform trajectory constitute a so-called
phase history.

The fact that the collected data corresponds to the Fourier transform of the reflectivity
density suggests that a reconstruction (image) of the reflectivity can be obtained by inverse
Fourier transformation of the data. It will be at best a partial reconstruction because we have only
partial data. For a linear trajectory, the phase history represents a planar surface in the spatial
frequency domain over which the value of I'(f) has been sampled. The most that can be obtained
is a two-dimensional image. Letting A(f) denote a weighted, two-dimensional processing
aperture over the data surface, the SAR image formation process is given by

g =3 {ANT()}

Additional insight is gained by noting that the image formation process is mathematically
equivalent to the convolution

g(r) = a(r)*y(r)

where

a() =" {A() }

is known as the spatial impulse response.

input
Parameters

« Aspect + EM Fieids = Resolution
« Sampling * Materials « Sidelobes

y

RAY TRACING SCATTERING COMPUTATIONS IMAGE FORMATION
CsG TarPat « Specular Reflections Generalized Physical « Contribution Mapping
Mode + Shadowing and Optics (GPO) « IPR Convolution

Obscuration « S-Matrix Statistics

Figure 2-2: Block diagram of the generalized physical optics SAR simulation

Simulation of the SAR system can be achieved by synthesis of the phase history followed
by aperture weighting and inverse transformation, or by direct computation of the reflectivity

density followed by convolution with the spatial impulse response. Both methods have been
implemented in SAR simulation programs like X-PATCH and RADSIM.

In the process of analyzing this approach, the simulated SAR technique can be broken
down into three steps as seen in Figure 2-2.

First, is the process of sampling a scene database made of polygons, splines, and
Constructive Solid Geometry. A ray tracing system is used to accomplish this sampling, by
simulating how the radar energy bounces through the scene.

Ray tracing is a process where rays are fired from a viewing window into the scene and
recursively traced through their specular reflections. Each ray is defined as vector with a starting
position at the sensor and a direction defined by the pixel it passes through on the viewing
window, in this case our synthetic aperture. Each ray is tested against all objects in the scene to
see if an intersection can be found. The process of finding the intersection involves finding the
roots of a system based on the combination of the vector and object. If multiple intersections are
found the closest intersection is used. Once an intersection is found, the object ID and the
intersection coordinates are recorded. In addition, several other properties at the intersection
point are determined. These are surface normal, curvature, surface material type, and length of
the ray from the intersection point to the origin of the ray. Using the surface intersection normal
and the incoming ray, a reflected ray is calculated along the perfect specular reflection direction.
This ray is fired from the current intersection point and the next intersection is found. This
recursive process continues until either the ray leaves the scene, or a preset number of reflections
are found. The intersection results of each original ray and all of its reflections create a ray
history that contains all the intersection information, normally stored in a linked list. The output
of the ray-tracing section is a ray history for each pixel in the image plane.

In programs like X-PATCH, the ray-tracing portion of the process consumes 50% to 60%
of the total computation time. With this being the major time component in the SAR simulation
process, it is a prime candidate for parallelization. Parallel ray tracing has been investigated by
several researchers and is not a simple problem. This process will be the major thrust of the
benchmark effort for simulated SAR imagery.

The second step is the process of converting the ray-traced information, the ray history,
into the electromagnetic (EM) response of the sampled scene data. Here each ray path is
analyzed to generate a fully polarimetric EM response solution. This is a linear process and does
not consume a large amount of time. This step, in the SAR simulation, would be a trivial process
to parallelize because each ray history is independent of all the others. Due to the small amount
of time and the simplicity of parallelization, this portion of the process is not considered as part of
the benchmark.

The final step in the simulated SAR process is converting the 2-D array of EM responses
into complex images. This is accomplished by mapping the 2-D array of EM responses into the
slant plane. This slant plane image is then convolved with a system Impulse Response (IPR) to
form a complex image that can be detected and viewed.

This final step is a unique combination of processes, from the viewpoint of parallelization,
and does present the second-highest consumer of CPU time. Creating a parallel version of this
section of the process will stress data-passing, as EM responses are mapped onto a rectangular
grid called the slant plane. This output then runs through a standard convolution. Each of these
steps will require different lay-outs of memory and should present some unique problems as a

parallel implementation. For this reason, and because this step is a large time consumer, it is part
of the simulated SAR benchmark.

2.2.3 Image Understanding

Image processing algorithms represent the third type of algorithm chosen for study. The
applications of interest include target detection and classification. A sampling of these algorithms
was chosen for this benchmark identifying bottlenecks that are common to image processing
applications. The sampling contains algorithms that perform spatial filtering and data reduction.
The algorithms selected for the benchmark are a morphological filter component, a region of
interest (ROI) selection component, and a feature extraction component. These form the Image
Understanding Sequence as shown in Figure 2-3. The morphological filter component provides a
spatial filter to remove background clutter in the image. Next, the ROI selection component
applies a threshold to determine target pixels, groups these pixels into ROIs, and selects a subset
of ROIs depending on specific selection logic. Finally, the feature extraction component
computes features for these selected ROIs.

thresholdLevel
minArea
maxRatio distanceShort
K selectNumber distanceLong
+ * regions
|14 |74 0 features
—> Morphological [—» ROl |—————» Feature ———P>
Filter Selection| ———Jpi Extraction

Figure 2-3: Image Understanding Sequence

Transformations that generate images from symbolic input, as well as Fourier Transforms,
were excluded, since these are addressed in other portions of the Benchmark Suite.

The input required by the sequence is a set of parameters and an image, V. The first step in
the sequence is a spatial morphological filter component generating image W. Then, the ROI
selection component applies a simple threshold and groups connected pixels into ROIs (or
targets) contained in image W. This component then computes initial features for each ROI in
image W, and selects candidate ROIs, depending on the values of these features. These selected
ROIs are stored in object image, O. The initial features for each selected ROI are stored in the
list regions. Lastly, the feature extraction component computes additional features for the
selected ROIs. The final output is a feature list, features, containing all the features calculated for
each selected ROL Details regarding the sequence can be found in Section 4.2.3.

Each algorithm has two associated costs: operational and pixel addressing. The

operational cost is a measure of the computational burden placed upon the processors to execute
the algorithm, and pixel addressing cost is a measure of the amount of memory usage or access

10

that is required. A brief description and analysis of each component, including its bottlenecks,
follows.

The morphological filter component chosen for the benchmark is a relatively
straightforward procedure, designed to remove background clutter and retain objects of interest.
The total cost of the morphological filter is determined by assuming the kernel is applied over the
entire input image, although in practice the kernel is usually only applied over a subset of the
image (the input image less a portion at the edges). The address-to-operation ratio is
approximately the same for each approach. The filter utilized in this benchmark includes three
distinct phases: erosion, dilation, and difference. The number of operations for the filter is

size(V)[4size(K) +1]

where V is the input image, K is the kernel, and size(X) is the total number of pixels in X. The
operational cost consists of two multiplies, one subtraction, one minimum comparison, and one
maximum comparison. The number of pixel addresses is

size(V)[4size(K) + 5]

where the kernel and input image are accessed multiple times as the kernel is applied over the
input image. The address to operation ratio is then

(4size(K) + 5)/ (4size(K) +1)
which is bounded in the range {1, 1.8}.

The ROI selection component of the sequence involves a threshold phase, a connected-
component phase (where detected pixels are grouped into objects), an initial feature extraction
phase, and a selection phase (where ROIs are selected based on the values of the initial features).
The initial feature extraction phase measures five characteristics of the object region. Three of
these—centroid, area, and perimeter —are descriptive of the shape and location of the ROL. The
other two—mean and variance —are statistical measures of amplitude over the pixel population of
the ROI. The threshold phase has an address-to-operation ratio of two. The operational and pixel
addressing costs associated to the connected component phase, the initial feature extraction phase,
and the selection phase vary greatly, depending on the implementation and the data involved, so
no analysis of these costs is provided here.

After selecting ROIs, additional features are calculated. These give a rough measure of the
texture of each ROL As discussed in [Parker 97], a gray-level co-occurrence matrix (GLCM)
contains information about the spatial relationships between pixels, by representing the joint
probability that a pixel with a given value will have a neighboring pixel at a particular distance
and direction with another chosen value. Since this matrix is square, with dimensions equal to the
number of possible pixel values, it provides more information than can easily be analyzed.
Statistical descriptors of the co-occurrence matrix have been used as a practical method for
utilizing these spatial relationships. Furthermore, [Unser] designed a method of estimating these
descriptors without calculating the GLCM, instead using sum and difference histograms. The
descriptors chosen as features for this benchmark are GLCM entropy and GLCM energy, and are
defined in terms of a sum histogram, sumHist, and a difference histogram, diffHist. These
descriptors are calculated for each of two distances and four directions.

It is typical in target detection systems to calculate many features to be used in a target
recognition step. The ideal is to choose the fewest and cheapest features possible that provide the
best detection result. The cost for the feature extraction component is dependent upon the
number of features or targets present in the input image which can range from zero to several

11

thousand in typical applications. This makes the algorithm very difficult to execute efficiently,
since many features will have a high computational cost with a small memory access cost, while a
few will have a low computational cost with a high memory access cost. Thus, an a priori-
implementation for feature extraction is generally not possible. Consequently, there is no
analysis provided here of the cost involved to calculate these features.

The two main bottlenecks which occur in typical target recognition applications are the
result of manipulations of large amounts of data while expending little computational effort, and
of smaller amounts of data in computationally intensive functions. The intent of this benchmark
is to represent these bottlenecks within the sequence, so that attempts to remove these bottlenecks
may be examined.

2.2.4 Multidimensional Fourier Transform

The Fourier Transform has wide application in a diverse set of technical fields. It is
utilized in image processing and synthesis, convolution and deconvolution, and digital signal
filtering, to name a few. In fact, the transform is utilized within both the Ray-Tracing and
Method of Moments benchmarks described elsewhere in this document. However, special
interest in the Fourier transform merits its independent inclusion in this benchmark suite.
Specifically, the interest is in the nature of the memory access patterns, which are indicative of a
large class of problems.

The multi-dimensional Discrete Fourier Transform (DFT) is defined as

Ny Ny
ik yny | Ny 2nikpn [N,
F(nynyyecogny)= D ooy gl gmtedNe e b k) 2.24.1)
ky=0 k=0

where f is an input complex multi-dimensional array of size N = N, X N, x---x N, and F is
the output forward transform of f. The Fourier Transform is rarely implemented directly as

Equation 2.2.4.1, since the process would require (Y/N°) operations. Instead, the transform can be
accomplished in (¥Nlog,N) operations, or less, using one of a series of methods generically
called Fast Fourier Transforms (FFT). These FFT methods exploit one or more mathematical
‘properties of Equation 2.2.4.1 to reduce the required number of operations.

The bottleneck associated with DFTs that is of interest here is the non-unit-stride memory
access associated with the transform. Part of the subscripts of Equations 2.2.4.1 can be “pulled
out” of the summations (i.e., the exponential with the subscript ky can be pulled outside of the
sum over ky.; etc.), which shows that the multi-dimensional DFT can be represented by a series
of one-dimensional DFTs:

F(n]’nz" . .,nN)= Fy (FN—I (FN—Z (F; (f(kl’kZ" . -’kN))))] 2242

where F, is a one-dimensional DFT over the specified index. The aspect of Equation 2.2.4.2 to

note is that for whatever memory access the inner loops attempt, the outer loop will always be
“opposite” or irregular, which prevents a unit-stride access. Rearrangement of the summations or
manipulation of the equations can alleviate this memory access bottleneck to some extent, but
some non-unit-stride access is present with most DFT implementations.

In order to simplify the implementation and specification of this benchmark, the DFT"is
limited to three-dimensional transforms only. The implementation of a 3-D transform is complex
enough to give an indication of the performance of the architecture on higher dimensional
transforms, but simple enough to be relatively easy to implement. The inclusion of one- or two-
dimensional transforms would not significantly add any other performance information regarding
the candidate architectures. In addition, one- and two-dimensional input can be approximately
tested by specifying the length of the remaining dimensions of the array to be one.

2.2.5 Data Management

The fifth area in which the DIS benchmark suite attempts to measure performance
improvement is in data management, specifically in the area of DBMS. Applications for
traditional DBMS have been dominated by archival storage and retrieval of large volumes of
essentially static data. Some newer applications, such as the Dynamic Database for Battlefield
Situation Awareness, demand management of complex, dynamic indices in addition to the data.

The objective of this benchmark is to measure the performance improvement of a given
hardware configuration for certain elements of traditional DBMS processing. Performance
improvements due to sophisticated database design or special software implementation are
avoided and not intended to be part of the benchmark. This benchmark focuses on two
weaknesses of conventional DBMS implementations: index algorithms and ad hoc query
processing.

Large volumes of data in a DBMS are typically referenced by an index structure. The
index can be used instead of brute-force searches over all the data when a query is made. The
index defines one or more elements of the data entries as key values. Thus, the key values are
specified in advance, and the DBMS maintains a separate index structure based on them. The
index is used to accelerate query processing by minimizing the amount of data that must be
accessed to satisfy the query.

Two assumptions typical of conventional algorithms are that the data will be predominately
static, and that operation can be suspended for index maintenance. Neither assumption holds for
the Dynamic Database or other dynamic information systems, and current applications drive
standard indexing schemes into frequent wholesale index regeneration, yielding unacceptable
performance.

The index structure allows efficient searches over a database when the query can use a pre-
defined key value. Queries which do not use a key value are called ad hoc, non-key, or content-
based queries. This query type requires a brute-force search over all database entries.
Conventional applications usually process an ad hoc query in two stages: an index-based search is
used for the index keys in the query formulation, if any, and brute-force search is performed on
the results of the index-based search. These brute-force searches are a bottleneck in a typical
DBMS. The performance impact of non-key queries can be reduced by parallel searches of the
data, which may be applicable to specific hardware architectures, or by partitioning the data.

Partitioning schemes provide an additional performance boost for a general database design
where the primary objective is to separate areas of the database into logical sections, each of
which is then indexed by its own scheme. The partition allows more efficient searches, when the
sections have been chosen well, or when an optimal scheme is known a priori. It also supports
parallel searches across partitions.

i3

Bottlenecks traditionally associated with DBMS primarily occur in query processing, and
the majority of work done to enhance performance has been in this area. Much of this query
optimization has increased the query response speed at the expense of maintaining the index over
the lifetime of the database. By definition, an index requires an increase in overhead or up-front
processing in favor of quicker, cheaper searches. Typical command operations such as insert and
delete have generally not been optimized. This reiterates the implied assumption of the existence
of periods during operation when user interaction can be suspended to deal with index
management. The cost associated with index management over the operation life of the database
represents a new measure of performance for advanced data management applications, and a
corresponding new bottleneck.

The indexing method chosen for use within this benchmark is an R-Tree structure. The R-
Tree index allows the key to represent spatio-temporal data, which makes the R-Tree particularly
applicable to geographic information; it is commonly supported by database vendors. The R-Tree
structure is as close to a de-facto standard for representing such data in a database context as
exists today.

The R-Tree index is a height-balanced tree containment structure, that is, nodes of the tree
contain lower nodes and leaves. Thus, the tree is hierarchically organized and every level in the
tree provides more detail than the previous level. The indexed data object is stored only once, but
because of the containment structure, keys at all levels are allowed to overlap. This may cause
multiple branches of the R-Tree to be searched for a query whose search index intersects multiple
nodes.

A general measure of index maintenance cost for separate command operations is the
number of node accesses required for each operation. Other measurements of cost become
increasingly software-dependent, and are avoided in this analysis. A generic R-Tree
implementation, which is given later in this document, has three command operations to measure:
insert, delete, and query. Because the R-Tree is a height-balanced structure, the total number of
paths for a full tree is given by:

h
N=Y2""F
k=1

where N is the number of paths, 4 is the height of the tree, and F is the fan or order of the tree.
Traditional performance measures have focused on the query response: for the generic R-Tree the
minimum number of node accesses is 4, which is expected from a height-balanced tree, and the
maximum number of node accesses is N, or a complete node search over all possible paths. The
maximum number is unique to the R-Tree or similar overlapping index trees and represents a
significant bottleneck. The problem is exacerbated for improperly managed index structures, and
can be alleviated by efficient software implementations and improved hardware architectures
which allow more efficient or parallel searches.

Index management over the operation of the database represents a new type of bottleneck
for advanced applications. The cost of maintaining the index can be estimated in the same
manner as for query commands, by determining the number of node accesses required to
complete the command in both the best and worst cases. A descriptive estimate of the average
case is also given, with the caveat that the average case is highly implementation-dependent, and
will vary for each system.

14

The insert operation has three separate phases: a search over all paths, insertion (which may
cause node splitting), and index key adjustment. The best case occurs when insertion does not
require node splitting and no parent keys need to be adjusted; this yields a cost of N node
accesses. The worst case does require splitting along each parent, and all parent keys are
adjusted; this yields a cost of N+2h node accesses. An average insert would tend to require
parent key adjustment and periodic node splitting. Thus, the average insert cost would tend
towards the maximum cost.

The delete operation has two phases: a search for the data to be deleted, and a possible key
readjustment. The best case has a cost of / node accesses, which represents no key adjustments
and an immediate “one” path search for the data. The worst case has a cost of N+h, which
represents a full search of the data and an all parent key adjustment. The average cost of a delete
operation tends to the minimum case, since the operation would include key adjustment but
probably not a full search.

The costs of the insert and delete operations are greater than or equal to the query operation
in both the best and worst cases. Thus, index management over the operational life of the
database represents a significant performance bottleneck when the data is dynamic.

This benchmark has been developed to measure the performance improvements of new
hardware architectures for both index maintenance and non-key queries, which represent the two
significant performance bottlenecks. One goal is to remove or “level” the algorithmic component
over all of the architectures, without preventing any new or unique software implementations that
would allow a significant performance improvement due to exploitation of special hardware
features. This is done by defining the benchmark as the implementation of a highly simplified
database with a specific index structure. The database supports only three simple aggregate data
objects whose primary difference is in size. The use of different sizes of data objects is intended
to prevent optimization of the implementation for an object of a specific size, and the sizes
themselves were chosen to prevent similar multiples. The objects are aggregate in that they
contain a set of data attributes or parts which are linked together as a list. An ad hoc query uses
an attribute of the object for non-key searches. This type of search with simplified objects is
relatively simple to implement, but is representative of more complicated database behavior such
as object traversal. This benchmark requires the use of the R-Tree structure, but the participant is
encouraged to modify or develop additional implementations tailored for new architectures.

The DIS benchmark metrics provide a measurement of the candidate architecture’s ability
to handle the “highest” load when the number of users is large and the system resources are taxed
to their limits. The benchmark simulates this maximum resource utilization by issuing the index
commands in a batch rather than a stream mode. A stream mode would more closely mimic a
“real” DIS application, allowing for multiple users and possible “down” time for index
maintenance. However, this benchmark is primarily interested in the extreme condition, where
down-time, in which a database can perform index maintenance with no cost to the users, is
assumed not to exist. The performance on successful completion of the entire data set with its
multiple commands is the primary metric of this benchmark, and this must include the time
required for index maintenance since this will directly affect the users under extreme conditions.
Participants are allowed to introduce artificial lags to the command input to simulate a stream
mode, but the times reported for individual command completion and overall set completion must
include the added lag times.

3. PROCEDURES

This section provides information on the procedures to be used when employing these
benchmarks. The primary purpose of the section is to answer the question, “How does one use
this benchmark?” It begins with an overview, then describes the procedures which are common
across all four benchmarks in this set. Metrics, measurement, reporting, data types, and precision
are also addressed.

3.1 OVERVIEW

Procedures are a critical element of benchmarking. To be useful, benchmarks must be
approached uniformly and analyzed consistently. According to [Honeywell], the following
questions must be addressed by benchmarking procedures:

How should baseline performance metrics be established, against which to compare the
other results?

How should the operations in the benchmark specification be performed?
How can it be ensured that an implementation is solving the intended problem?
How should measurements be made?

How should benchmark results be reported so that anyone examining the results has
sufficient information to interpret them correctly?

3.2 BENCHMARKING PROCEDURE

The following procedure should be executed by any group or individual wishing to generate
an implementation of this benchmark set. The sequence was published in [Honeywell], and
applies to all five of the benchmarks in the set. It is presented here modified only to the degree
necessary for relevance to this set.

Step | - I ‘:-5:“Action

1 Review the background and all procedures as specified in this document. These
capture the common aspects of all benchmarks.

2 Review the benchmark specifications, as given in Section 4 of this document,
noting any restrictions associated with the benchmark development activity.
Understand the metrics of interest, the acceptance test, and the information that
needs to be reported.

3 Develop a benchmark implementation in accordance with the benchmark
specification. This step can take one of two forms:

simple compilation, with no source code modification, in the case of an
‘un-optimized’ code test, or manual optimization, to the degree desired by
the participant. In this case, the specific steps or operations to be
performed are particular to the benchmark being implemented. A precise
description of the steps is provided in each respective benchmark
specification. Any restrictions regarding the steps are also provided.

For both cases, baseline source code, written in the C programming language is

provided.

4 Tabulate any information required by the Metrics portion (Section 3.3) of this
document.
5 The process used to measure benchmark metrics is important in the

interpretation and reproducibility of results. Section 3.3.4 provides a
description of the allowable techniques for measurement. Timing must be
performed as specified in this document. Benchmark runs should be repeated a
sufficient number of times as to ensure reproducibility of results.

6 The use of acceptance tests is critical to determining whether a specific
implementation is deemed valid. For each benchmark run, examine the results
and verify that they pass the appropriate acceptance test as defined in the
benchmark specifications (Section 4).

7 Reporting of results is a weakness of many existing benchmark approaches.
Section 3.5 addresses the topic of results reporting in detail, providing
guidelines regarding what information needs to be provided to ensure that
adequate interpretation of the results is possible.

Participants are required to measure performance of all five benchmarks using ‘un-
optimized’ code. That is, the baseline code provided for each benchmark must be compiled
without any modification, and run ‘as-is’ to establish performance of the architecture utilizing
only automatic optimizations. In addition, participants are encouraged to modify or replace this
baseline source code and run the tests again, establishing performance after manual optimizations.
This should be done for one of the benchmarks at the very minimum. This process may be
repeated as desired, but users are reminded that each level of optimization must be documented in
accordance with Section 3.5.1.

Therefore, the above procedure must be followed at least six times—once for each ‘un-
optimized’ benchmark, and once for one ‘manually optimized” benchmark. There 1s no limit to
how many times it may be followed. However, the ability of the reviewers to effectively analyze
the results must be considered.

3.3 METRICS

Of primary interest for all the benchmarks in this set is the trade-off between ‘performance’
and ‘cost’, where performance is focused mainly on maximizing throughput, and cost is focused
mainly on programmer labor costs. Of course, there are many other important considerations
relating to performance and cost; some important contributing factors are listed here:

Performance Cost
Maximize throughput (primary) _ Minimize programmer labor (primary)
Maximize scalability Minimize development labor
Minimize power consumption Maximize use of OTS parts
Maximize robustness Minimize part count
Maximize implementation flexibility Maximize ability to retrofit

| Minimize volume and weight

17

To quantify these factors, metrics are specified for each benchmark. These are only
concerned with the performance aspect of the trade-off. It is expected that the cost aspect will be
addressed in the Architectural Description and Comments portions of the reports. While each
benchmark will require different measurements of performance, all metrics are intended to
quantify throughput. How these measurements vary over the range of input data sets gives some
notion of scalability for a specific configuration. How the configuration itself can be scaled is
another issue to be addressed in the Architectural Description.

Implicitly, the implementations are expected to provide correct output to even be considered.
This requirement is an element of each acceptance test, and is therefore not a metric in need of
evaluation.

The energy spent by implementers laboring in the development of each benchmark
implementation is of special interest. As this is ultimately difficult to measure accurately,
reviewers will rely on participant’s candid reporting on this subject. A frank summary of the
required skills, labor expended, and problems encountered during the process would be of great
benefit to those establishing the utility of a given design.

Although peripheral devices vary greatly in access speeds and communication throughput
rates, it 1s desirable to understand the limitations on throughput induced by the architecture.
Therefore, for all benchmarks, the time spent reading from input and writing to output should be
included in time-for-completion metrics, but recorded separately where possible. Participants
should comment on I/O features or limitations in their Architectural Descriptions.

Power consumption is also an important metric. Again, the early stages of development
under the DIS program might make accurate quantification of power consumption impossible.
However, participants are expected to include their best estimates of the power required for each
benchmark in the suite. Measurement methods employed should be detailed in the report, as it is
anticipated that no specific methodology may reasonably be imposed.

Although scalability with respect to problem size is largely addressed by the spectrum of
input sets provided with the benchmark, scalability with respect to processor or memory
configuration can only realistically be addressed by qualitative analysis. Participants should
address this issue for each benchmark in their reports.

Additional metrics for each of the benchmarks are described in the following subsections.
This information is also included in the benchmark specifications (Section 4). These, and the
above basic metrics should be considered the minimum required for a report. It is in the
participant’s interest, however, to supply a complete report, with all the details relevant to
evaluators concerned with DIS applications.

3.3.1 MoM Benchmark Metrics

The metrics for the Method of Moments Benchmark consist of three measures:
performance, scalability with respect to problem size, and scalability with respect to processors.
The metrics are described in detail in Section 4.2.1.5.

The most important of the three metrics is performance, which is measured in wall-clock
time. The primary measure of performance is the total wall-clock time for the calculation of the

far-field by the multilevel FMM. The secondary measure of performance is the breakdown of the
total time into the total time for all translation operations and the total time for all spherical
harmonic filtering/synthesis calculations. The tertiary measures of performance are the
breakdown of the secondary measures into the total time for each of the six steps in the multilevel
FMM as specified in Section 4.2.1.2.2.

3.3.2 Simulated SAR Ray Tracing Benchmark Metrics

The primary metric for the simulated SAR ray-tracing benchmark suite will be total
execution time. Secondary metrics will be scalability (how does adding more processors effect
the timings and how do larger data sets effect the timings) and load distribution (how is the
workload distributed among the processor). These secondary metrics are important measures for
the ray tracing part of the benchmark. The major problem with parallel implementations of ray
tracing is in achieving a constant work load and maintaining scalability.

3.3.3 Image Understanding Benchmark Metrics

The primary metric associated with the image understanding benchmark is total time for
accurate completion of a given input data set. A series of secondary metrics for the individual
times of the processing operations is also required. See Section 4.2.3.5 for more detail.

3.3.4 Multidimensional Fourier Transform Metrics

There are three metrics for this benchmark. The first, and primary, is the total time
required to complete the input set. This should include the time for each transform test as well as
the /O time required to load the randomly generated input, and output the result. The total time
should not include the time necessary for the generation of the random data. The second metric is
the time required to complete the individual transform tests. Again, this time should include any
/O time for loading of data and output of results. The third metric measures the “mflops”
[Johnson] of the individual transform tests. The “mflops” for a given transform is defined to be

5(X x ¥ x Z)log, (X x Y X Z)
(time for one DFT in Us)

n mﬂopsll____

where X, Y, and Z are the lengths of the first, second, and third dimensions, respectively. The
rational behind using this metric is to provide a reasonable comparison between different
architectures, implementations, and transform sizes. Note that “mflops” are not equivalent to
MFLOPS (millions of floating-point operations per second), but are instead an estimate of that
value that assumes a common baseline number of operations for any implementation as

5(Xx Y x Z)log, (X x ¥ x Z)+9(N)
which is the radix-2 Cooley-Tukey FFT[Cooley]. This third metric is common in the FFT
literature and for more discussion of the reasoning behind the metric, the reader is referred to

[Johnson].

3.3.5 Data Management Benchmark Metrics

The primary metric associated with the Data Management benchmark is total time for
accurate completion of a given input data set. A series of secondary metrics are the individual

19

times of the command operations: Insert, Delete, and Query. Best, worst, average, and standard
deviation times should be reported for all operations for each data set.

The time for a non-response command operation to complete is defined as the time
difference between the time immediately before the command is placed in the database input
queue and the time immediately before the next command is placed in the same input queue.
This time difference is essentially the rate at which each line of the input data set is read and
executed. This definition is applied to the Insert and Delete command operations. The time for a
Query command operation to complete is defined as the time difference between the time
immediately before the command is placed in the input queue to the time immediately after the
response is placed in the output queue.

3.4 MEASUREMENT PROCEDURES

When measuring performance of a benchmark implementation, the following considerations
must be made:

Actual platform measurements are preferred over simulated results. It is understood that
early iterations through the benchmarking process will necessarily be based on simulation, but
these must give way to measurements of actual systems for reliable determinations to be
achieved.

If simulations are used, a description of the model and tools used, and the bases for the
timing values, should be provided.

All data sets should be used. They have been provided in a range of sizes, so as to test
fixed-system scaling effects resulting from limited-resource optimizations. Should particular data
sets be unusable for some reason (e.g., the dataset requires more memory than that which is
available), the reason should be reported.

There may be no recompilation or manipulation of the software or hardware between runs
producing final measurements. Recall that quantifying the effects of system design decisions is
one of the goals of this effort. Therefore, the environment must be consistent throughout the tests
‘to ensure validity of measurements relative to one another.

Tests should be repeated enough times to ensure reproducibility.

As the DIS effort is primarily concerned with memory issues, measurement of time to
perform /O operations shall ideally be factored out. However, because the relative need for-and
speed of-1/0 is determined by the architecture, these times should be measured and included in
the report. If possible, the time for these operations should be noted, so they can be excluded
when appropriate.

3.5 SUBMISSION OF RESULTS

3.5.1 Required Elements

Participants are expected to supply the following items as a result of their tests:

20

Item Description
Architecture A detailed description of the hardware and software environments utilized
description during testing should be supplied. The description should be sufficient that

strengths and weaknesses of the architecture pertinent to the benchmarks can be
understood. Known performance measures such as bisection bandwidth and
feature size should be included. Limits of the architecture (e.g., maximum of 32
processors, or maximum clock rate of 100Mhz) should be identified, and if
predicted performance is to be considered, it must be justified in the Comments
section of the report. As it is unwise to compare raw timings, even for similar
architectures, without considering the differences in technology between the
systems, this description is critical to the process, and should be organized,
detailed, and complete.

Source code

If modifications are made to the baseline source code in support of optimized
performance, the revised source code used during testing should be supplied,
along with corresponding documentation of the changes, and detailed
documentation of the code compilation, assembly, and execution.

Implemen-
tation
documentation

A detailed record of the implementation, including rationale and approach to
optimizations, is expected. This is particularly important when deviations from
the baseline code are employed, or when problems in implementation are
encountered. An accurate account of the labor required to implement each
benchmark is required.

Output data

Output data sets should be made available. Any deviations from the output data
specification should be explained.

Measurements

Performance figures for each applicable benchmark should be supplied, along
with a description of how they were obtained. Any missing measurements
should be explained. Metrics in addition to those required by this specification
are encouraged, but they must be accompanied by documentation of how they
were gathered, and how they are pertinent to the analysis. See Section 3.3 for
more information.

Comments

Participants are encouraged to include any other information pertinent to the
benchmarking process, including explanations of special circumstances, or
recommendations for improving the benchmark. To be considered, theoretical
performance of an unbuilt architecture should be given and justified. Particular
attention should be given to the scalability of the architecture with respect to
each of the benchmarks in the suite. Results from implementations of other
benchmarks are welcomed, also, though these should be sufficiently delineated
so as not to obscure the data directly relevant to this benchmark.

3.6 COMMON DATA TYPES

The reference to several common data types used throughout this document and the
accompanying specifications are described in this section. The descriptions given here apply to
all data type references unless specifically noted.

21

Type

Description

byte

A byte consists of eight contiguously stored bits, with bit 0 being the least significant
bit (LSB) and bit 7 being the most significant bit (MSB). A signed variant uses bit 7 as
a sign bit.

char

A char represents a 7-bit ASCII character with a decimal range of 0 to 127 as defined
by the ANSI specification, stored in a byte (with bit 7 always set to zero). The term
whitespace refers collectively to the characters of space (value 32), horizontal (value 9)
and vertical (value 11) tabs, line-feed (value 10), and form-feed (value 12).

short
integer

A short integer is a2 whole number stored contiguously as one 16-bit word (in 2 bytes).
Bits 0:15 contain the integer, with bit 0 being the LSB and bit 15 being the MSB. Bit
16 is the sign bit.

integer

An integer is a whole number stored contiguously as one 32-bit word (in 4 bytes). Bits
0:30 contain the integer, with bit 0 being the LSB and bit 30 being the MSB. Bit 31 is
the sign bit.

float

A float 1s a single-precision 4-byte real number stored contiguously as one 32-bit word
in excess 127 notation, and has a one-bit sign, an 8-bit biased exponent, and a 23-bit
fraction. Bits 0:22 contain the 23-bit fraction with bit 0 being the LSB of the fraction
and bit 22 being the MSB; bits 23:30 contain the 8-bit biased exponent with bit 23
being the LSB of the biased exponent and bit 30 being the MSB; bit 31 is the sign bit.

The value of a float is given by:

: Value - ; ‘Bit Pattern
(=1)°% x 2% 7 « | fraction 0 < exponent < 255

(-1 x 27" x 0.fraction exponent = 0;fraction # 0

(~=1)*" x 0.0 (signed zero) exponent = 0;fraction = 0
+INF (positive infinity) sign = 0;exponent = 255;fraction = 0
-INF (negative infinity) sign = l;exponent = 255;fraction = 0
NaN (Not - a - Number) exponent = 255;fraction # 0

This description conforms to the IEEE 754 Floating-Point Arithmetic standard and the
reader is referred to it for further information including minimum and maximum
values.

double

A double is a double-precision 8-byte real number stored contiguously as two
successively addressed 32-bit words in excess 1023 notation, and has a one-bit sign, an
11-bit biased exponent, and a 52-bit fraction. Bits 0:51 contain the 52-bit fraction with
bit 0 being the LSB of the fraction and bit 51 being the MSB; bits 52:62 contain the
11-bit biased exponent with bit 52 being the LSB of the biased exponent and bit 62
being the MSB; and the highest-order bit (63) contains the sign.

22

The value of the double is given by:

v Value = -~ - Bit Pattern
(=D x 27719 » | fraction 0 < exponent < 2047
(=)™ x 2" x (.fraction exponent = 0;fraction # 0
(=1)"® x 0.0 (signed zero) exponent = 0;fraction = 0
+INF (positive infinity) sign = 0;exponent = 2047, fraction = 0
-INF (negative infinity) sign = 1;exponent = 2047, fraction= 0
NaN (Not - a - Number) exponent = 2047;fraction # 0

This description conforms to the IEEE 754 Floating-Point Arithmetic standard and the
reader is referred to it for further information including minimum and maximum
values.

3.7 ARITHMETIC PRECISION

The mathematics in the benchmark algorithms requires the manipulation of values which
cannot be stored in finite-precision memory representations. Since the successful completion of a
benchmark is determined by a comparison between the output of the benchmark implementation
and results provided by the baseline solution, the question of precision and accuracy must be
addressed.

The data types used for the input to the benchmarks conform to the IEEE 754 specification,
which also specifies the manipulation of these data types to ensure the mathematically expected
results and expected properties for finite arithmetic. The output provided with the benchmarks
conform to the IEEE 754 standard, as does the baseline implementation. Benchmark participants
are not required to implement this specification, but the output of their implementations must
have the same level of precision, and perform to at least the same level of accuracy for numeric
calculations. This requirement allows the baseline results to be accurately compared over the
‘various architectures and implementations.

23

4. SPECIFICATIONS

This section provides the specifications of each of the five benchmarks, preceded by an
explanation of the approach and intent relative to the specifications. The specifications utilize a
common outline, and are intended to contain the information needed by implementers.

4.1 APPROACH

Each specification provided here is intended to be separable from the remainder of the
document; it contains all the information needed by a developer charged with building an
implementation of a benchmark, with the exceptions of the Common Data Types specification
from Section 3.6 and the Arithmetic Precision specification from Section 3.7. Complete
specifications of input, algorithm, output, acceptance tests, and required metrics are included.

In several cases, common algorithms used in the solution of the selected problems are
optimized for use with traditional systems. For example, certain steps in the Method of Moments
algorithm are only present to take advantage of unit-stride memory accesses. While these steps
are not strictly part of the solution algorithm, it would be onerous to require participants to
independently rediscover them. In some cases, it would require implementers to become experts
in the application field. So, the algorithmic descriptions are intended to cover the mathematics of
the solutions only. Known optimizations are additionally provided for informational purposes,
but implementation of these is not required.

Pseudo-code provided in the algorithmic specifications is intended to provide guidance and
clarification of algorithms only; it is not intended to represent optimal-or efficient—
implementations of problem solutions. Similarly, pseudo-code is not intended to represent
‘known optimizations’ as described above, except when specifically identified as such.

4.2 BENCHMARK SPECIFICATIONS
Detailed descriptions of the benchmark algorithms are included in this section. Any

suggestion of the specific implementation of an algorithm is not intentional; all descriptions
implying a specific implementation should be viewed as examples only.

24

4.2.1 Method of Moments

The first class of algorithms chosen for inclusion in the DIS benchmark suite are Method
of Moments (MoM) algorithms, which are frequency-domain techniques for computing the
electromagnetic scattering from complex objects. MoM algorithms require the solution of large
dense linear systems of equations. Traditionally, MoM algorithms have employed direct linear
equation solvers for these systems. The high computational complexity of the direct solver
approach has limited MoM algorithms to low-frequency problems. Recently, fast solvers have
been introduced which have low computational complexity. The potential of these fast solvers to
enable MoM algorithms to solve larger problems at higher frequencies is ultimately limited by the
speed of main memory. Thus, fast MoM algorithms may benefit from the Data-Intensive Systems
research effort.

The scattering of a plane wave of a specified frequency, @, from an object is given by
Maxwell’s equations. The Electric Field Integral Equation (EFIE) and the Magnetic Field Integral
Equation (MFIE) formulations, which describe the surface current densities induced by an
incoming plane wave of frequency @, are given by

- e 1 - 2 N ' ot ' [
an(r)=——im8">< I(—m ues G W+ (V- JEW v)7 42.1.1)
25

2ix HE)=JF)-28% [JE VW

F'eS

(42.12)

where
iR

e
4nR

¥()=

(4.2.1.3)

is the Green’s function for the incoming plane wave.

The Method of Moments (MoM) approach to solving the EFIE or the MFIE is to
discretize the equation by expanding J (F) in terms of a set of basis functions B, (7) as follows

N
JF)=Yj.8.¢) (4.2.1.4)

where J = {j,} the vector of expansion coefficients. When this expansion is substituted into the
integral equation (4.2.1.1) and the result multiplied by a basis function and integrated over the
scattering surface, the problem reduces to solving a linear system of equations

zZ.J=V
(4.2.1.5)

for the vector of expansion coefficients J = {j.}, where the entries in the matrix Z = [Z,,/ and the

vector V = {v,} are complicated double integrals over the scattering surface and must be
calculated numerically. For example, the entries in Z = [Z..] are given by

25

Zn = [B.6) {—1- [Comes, ¢ + 65, ;'))v'w)ﬁ'}df @216
7eS

ioe .5

Generally, N increases as the square of the frequency, and for typical problems, N is
greater than 10,000. In traditional MoM algorithms, which first appeared in the late 1960’s, the
dense linear system Z » J = V is solved by a direct linear equation solution algorithm, which may
be composed as an in-core or out-of-core solver. On modern parallel computers, the direct
solvers may be extended to work on shared or distributed memory computer architectures.

The advantage of MoM algorithms is that they are exact representations of Maxwell’s
equations and highly accurate simulations are possible. The disadvantage of the traditional MoM
algorithms is that the methods are computationally intensive, especially as the frequency goes up.
The computational complexity of traditional MoM algorithms includes O/N?) integral evaluations
to compute the matrix Z and /N’ arithmetic operations to solve the system Z »J = V for J. The

memory requirement for traditional MoM algorithms is/N°). For these reasons, the traditional
MoM algorithms are generally used only for low frequency problems. Although traditional MoM
algorithms have been highly optimized on a variety of high-performance computing machines,
the largest problems solved so far are for N on the order of 100,000.

Recently, new fast MoM algorithms based on fast, iterative linear equation solvers have
been introduced. The iterative solvers rely on numerically stable and rapidly converging iteration
procedures, such as the preconditioned GMRES method [Saad]. Fast matrix-vector multiply
algorithms are used to compute products of the form used in the iterative procedure. The
computational complexity of the fast MoM algorithms is (fNlogN). The memory requirement
for the fast MoM algorithms is (YN). This is a remarkable reduction from the ON°)
computational complexity of the traditional MoM algorithms, and potentially allows the solution
of much larger problems at higher frequencies.

Rohklin [Rohklin-1, Rohklin-2] has introduced new fast MoM algorithms for the
Helmholtz equation, which use iterative linear equation solvers and the fast multipole method
(FMM) for fast matrix-vector multiplies. To compute products of the form Z * X, the Z matrix is
not formed or stored, rather the product Z * X is viewed as a field and approximately evaluated by
the FMM. The mathematical formulation of the FMM is based on the theory of multipole
expansions, and involves translation (change of center) of multipole expansions and spherical
harmonic filtering. The computational complexity of these new methods is(YNlogN) and the
memory requirement is (AN).

Building on the FMM approach, Dembart, Epton and Yip [Dembart-1 to 4] at Boeing have
implemented a fast MoM algorithm in a production grade electromagnetics code used by the
company for radar cross-section (RCS) studies. Problems for which the number of unknowns is
on the order of 10,000,000 have been solved with this code. Boeing’s fast solver uses the
preconditioned GMRES iterative method, which requires only the calculation of products of the
form Z * X, combined with a multilevel FMM for fast matrix-vector multiplies. The solver may
be summarized as follows:

1. The preconditioned GMRES iterative solution method is used to solve the system Z +J = V.
This method does not require computation and storage of the matrix Z, but rather requires the
capability to compute, for a given vector X, the product Z « X.

26

2. To compute the product Z + X, the Z matrix is first decomposed into two pieces which rep-
resent contributions from “close together” and “well separated” basis functions, respectively

Z=Zp+Zp0 42.1.7)

3. The matrix Z,., is sparse, and it is computed once and for all, directly from the integral
representation for its entries, in O/N) integral evaluations. The product Zye,r * X is computed
directly for each X in OYN) arithmetic operations.

4. The matrix Zg is dense, but it is never computed at all—rather the product Zy o X 18
computed for each X by a multilevel FMM in O/NlogN) arithmetic operations.

Boeing’s multilevel FMM method is formulated by enclosing the scatterer in a cube and
then successively refining the cube into subcubes until the dimensions of the finest cubes are on
the order of several wavelengths. At each level in the cube hierarchy two multipole expansions
are computed: the outer expansion (field outside the cube due to sources inside the cube) and the
inner expansion (field inside the cube due to sources outside the cube). The outer and inner
expansions are efficiently represented by far-field signature functions. The key computations are
translating multipole expansions (change of center) and harmonic analysis/synthesis of signature
functions. The multilevel FMM calculation begins by computing the outer expansion at the finest
level from X. Next, the outer-to-outer translation operation is applied to traverse up the cube
hierarchy computing the outer expansions at all levels. Next, the outer-to-inner and inner-to-inner
translations are used to traverse down the cube hierarchy computing the inner expansion at all
levels. Finally, the matrix-vector product Zg,, * X is then computed from the inner expansion at the
finest level.

The (YNlogN) computational complexity of the FMM results from the computational
strategy of applying the outer-to-inner translation at each of the cube hierarchy as follows. At the
coarsest level in the cube hierarchy, the outer-to-inner translation is applied to all pairs of cubes
that are non-adjacent. For all finer levels in the cube hierarchy, the outer-to-inner translation is
applied only to pairs of cubes that are non-adjacent at the given level, and whose parents are
adjacent at the next higher level.

Fast MoM algorithms, such as Boeing’s described above, have the potential to compute
the electromagnetic scattering from complex objects at frequencies 10 to 100 times higher than
possible with traditional MoM algorithms. The ultimate potential of these fast MoM algorithms
is limited by two memory-related bottlenecks: low reuse of data and non-unit stride. For these
reasons, we have chosen to base the Method of Moments Benchmark on Boeing’s fast solver. The
benchmark computes the far-field component of the wave field generated by a collection of
radiating scalar sources. The evaluation of the far-field corresponds to the evaluation of the
matrix-vector product Zg, * X described above. The computational method implemented in the
benchmark is a scalar multilevel FMM similar to the multilevel FMM used in Boeing’s fast
solver. The key FMM kemels represented in the benchmark are the translation operations and
spherical harmonic filtering. Detailed specifications of the Method of Moments Benchmark are
given in the following sections.

4.2.1.1 Input
An input set for the Method of Moments Benchmark, which contains everything

required to run the benchmark, consists of three binary input files: source strengths, cubes, and
translation operators. The contents of the files are described in the sections below.

27

4.2.1.1.1 Source Strength File

The source points and their corresponding source strengths are specified in the Source
Strength input file. The record types in the file are specified in the following table. The first
record in the file is a record of type 1 containing a single integer number defining the number of
source points. This is followed by a record of type 2 for each source point containing four
floating point numbers (double) defining the three spatial coordinates of the source point and the
strength of the source at the source point.

Record Contents
Type
1 integer
N
2 double float double float double float double float
X Y V4 Q

4.2.1.1.2 Cube File

The cube hierarchy on which the multilevel FMM operates is specified in the Cube
input file. The record types in the file are specified in the following table. The first record in the
file is a record of type 1 containing a single integer number defining the number of levels in the
cube hierarchy. For each level in the cube hierarchy, there is a set of records defining the cubes
in the level. The first record for a level is a record of type 1 containing a single integer number
defining the number of cubes for the level. This is followed by a set of records for each cube.
The first record for a cube is a record of type 2 containing three floating point numbers (double)
defining the three spatial coordinates of the cube’s center and an integer number defining the
number of cubes in the level adjacent to the cube. This is followed by a record of type 1 for each
adjacent cube containing a single integer number defining the number of the adjacent cube.

28

Record | Contents
Type
1 integer
N
2 double float double float double float integer
X Y Z M

4.2.1.1.3 Translation Operators

The tables defining the translation operators are specified in the Translation Operator
file. The record types in the file are specified in the following table. The file contains four tables:
outer-to-outer operator, inner-to-inner operator, outer-to-inner at top level, and outer-to-inner at
levels below top level. The four tables all have the same structure: a list of complex numbers
followed by a list of integer numbers.

The first record in the table is of type 1, containing a single integer number defining the
number of complex numbers in the table. This is followed by a record of type 2, containing a
single complex number (double), for each entry in the list. The next record in the table is a record
of type 1, containing a single integer number defining the number of integer numbers in the table.
This is followed by a record of type 1, containing a single integer, for each entry in the list.

Record Contents
Type
1 integer
N
2 double complex
X

4.2.1.2 Algorithmic Specification

The Method of Moments Benchmark computes the far-field component of the wave field
generated by a collection of radiating scalar sources. The computational method implemented in
the benchmark is a scalar multilevel FMM similar to the multilevel FMM used by Boeing in its
fast MOM solver discussed above. The mathematical formulation of the scalar multilevel FMM

29

relies on the theory of scalar multipole expansions and the theory of harmonic analysis/synthesis
of signature functions. We present the specifications of the benchmark in the following order.

5. Field Generated by a Distribution of Scalar Sources
6. Multilevel Fast Multipole Method

7. Translation Operations

8. Spherical Harmonic Synthesis/Analysis

4.2.1.2.1 Field Generated by a Distribution of Scalar Sources

For the Method of Moments Benchmark, we define a scalar wave field as a field ¢ (76)
which satisfies the scalar Helmholtz equation

2 —_
(V " kz)’ =0 (4.2.1.8)

where k£ is the wave number. The benchmark computes the field generated by a collection of

sources radiating from source points {ii }Zl with amplitudes {qi }Zl at a collection of field points

{yi }M_] . The value of the field at the field points is given by
=

oG,)= gqaho Qfl?,- -)?D (4.2.1.9)

where 4, is the spherical Bessel function of the first kind (we assume a time variation ofe™™").

N
/

Figure 4-1: Coarse Grid and Scatterer

For convenience in the Method of Moments Benchmark, we take the field points to be
identical to the source points. Under this assumption, the computational complexity of computing
the field values at the field points by approximately evaluating the Bessel functions and doing the

30

sum is ON’). This is similar to the computational complexity of the matrix-vector multiply step
in an iterative MoM solver for N unknowns.

4.2.1.2.2 Multilevel Fast Multipole Method

In this section we formulate the multilevel fast multipole method and show that the
computational complexity of the method is O'NlogN).

Figure 4-2: Fine Grid and Scatterer

We begin by introducing the multilevel cubical grid system utilized in the multilevel
FMM. The source and field points are enclosed in a cube. This cube is then subdivided into eight
equal subcubes, and each of those is similarly sub-divided, until a sufficiently fine grid is
achieved. The dimensions of the cubes at the finest level are on the order of several wavelengths
and the number of levels isO/NlogN). At each level of this grid system there is a set of “active”
cubes, that is, cubes which contain the source or field points. Only the active cubes are used in the
multilevel FMM. One level of such a grid is depicted in Figure 4-1. A second, finer grid is
shown in Figure 4-2. To simplify the figures the illustrations are two-dimensional. Cubes are
represented as squares and the scatterer as a one-dimensional curve. The source and field points
are distributed along the scatterer and are not explicitly shown in the figures. To simplify the
description of the multilevel FMM, we will describe the method for the two level (fine and
coarse) cubical grid system, shown in Figure 4-1 and Figure 4-2. As appropriate, we will indicate
which steps must be repeated for cube hierarchies with more than two levels.

First, we introduce the outer-to-inner translation. Referring to the fine grid shown in
Figure 4-2, we consider two distinct cubes Cd and Ce with centers d and €, respectively. The
finite degree outer expansion centered at d for the wave field¢ 5‘1)(55) outside Cd due to the

sources inside Cd has the form

Ny n -
9O6)=Y. 3, orh @i -

n=0 m=—n

N
/

Yo G-a)f-a

(4.2.1.10)

where the coefficients D, are given by

31

N
D; = Z_]:qf‘*“jn % - 2" G - Y% -¢]) 4.2.1.11)

The outer-to-inner translation from d to & is the construction of an inner expansion for ‘Sd)(i)
centered at € having the form

006)= Y, S, G-k (@ - 2yl -2) @2.1.12)

n=0 m=-n

that is valid for all X inside Ce. The calculation of the coefficients £, from the coefficients D)’
is described in the discussion of the translation operations below.

For a given decomposition into cubes and specified values for Nd and Ne, the accuracy

of the outer-to-inner translation from d to € depends only on the distance d —€ between the
cubes. For a specified accuracy, we say two cubes satisfy the far-field condition if they are
sufficiently separated so that the accuracy of the outer-to-inner translation for the pair satisfies the
specified accuracy.

The outer-to-inner translation provides a (1-level) computational tool to compute the
field at the field points. The calculation proceeds in several steps

e For all cubes Ce we apply, for all cubes Cd that satisfy the far-field condition, the outer-to-
inner translation to translate Cd’s outer expansion to an inner expansion at Ce’s center and
sum the translated inner expansions. The result is the inner expansion for all cubes Ce due to
all the sources in cubes that satisfy the far-field condition with respect to Ce.

e For all cubes Ce, we compute the field at field points in Ce as the sum of the far-field, which
is given by the inner expansion computed in step1, and the near-field due to all sources inside
cubes (including Ce) that don’t satisfy the far-field condition with respect to Ce.

If we decompose the domain into very fine cubes, the computational complexity of the
‘second step is reduced to only (X1), but the computational complexity of the first step remains
AN,). Similarly, if we decompose the domain into course cubes, the computational complexity
of the first step is reduced to only (X1), but the computational complexity of the second step
remains (XN,). This problem is resolved by the multilevel FMM. To specify the multilevel FMM
we introduce the outer-to-outer and inner-to-inner translations.

Referring to Figure 4-1 and Figure 4-2, we consider a cube Cd at the coarse level with
center d and a cube Cc at the fine level with center ¢ . The finite degree outer expansion
centered at ¢ for the wave field ¢ c(”)()'c') outside Cc due to the sources inside Cc has the form

96)=3 3 cr, @ - 2er @ -2YR-7) 42.1.13)

n=0 m=-n

where the coefficients C,' are given by

32

N
cr =Y g4, W - & G - Y ~c|) (4.2.1.14)

i=1

The outer-to-outer translation from ¢ to d is the construction of an outer expansion for ¢ C(“)(ic’)

centered at d having the form

006)-3 3 i, (e~

n=0 m=-n

N
/

Yo G-a)e-a

that is valid for all ¥ outside Cd. The calculation of the coefficients D! from the coefficients

(4.2.1.15)

C" is described in the discussion of the translation operations below.

Referring again to Figure 4-1 and Figure 4-2, we consider a cube Ce at the coarse level
with center & and a cube Cf at the fine level with center f . Suppose that we have constructed a
finite degree inner expansion centered at & for the wave field <|)E(e)(f) inside Ce due to the

sources outside Ce of the form
N, n
206)=3 e, Wi - G-2yE-2) (4.2.1.16)
n=0 m=-n

The inner-to-inner translation from & to f is the construction of an inner expansion for

) E(e)()'c')centered atf having the form

$PE)= % S F @lf— fl),f" G- f)’li -]1: (4.2.1.17)

n=0 m=—n

that is valid for all #in Cf. The calculation of the coefficients F," from the coefficients E] is

described in the discussion of the translation operations below.

33

Figure 4-3: Outer-to-Outer Translation from Fine to Coarse Level

The outer-to-outer and inner-to-inner translations provide the computational tools we need to
use the cube hierarchy to efficiently compute the field at the field points. The calculation
proceeds in several steps, traversing up and down the cube hierarchy.

9. For all cubes Cc at the fine level we compute the finite degree outer expansion for Cc¢ from
the sources at the source points.

10. For all cubes Cd at the coarse level, we apply the outer-to-outer translation to translate the
outer expansion for each of Cd’s children to Cd’s center and sum the translated outer
expansions. The result is that we have constructed the outer expansion for all cubes Cd at the
coarse level. The outer-to-outer translation from the coarse level to the fine level is shown
in Figure 4-3.

For all cubes Ce at the coarse level we apply, for all cubes Cd at the coarse level that
satisfy the far field condition, the outer-to-inner translation to translate Cd’s outer expansion to an
inner expansion at Ce’s center and sum the translated inner expansions. The result is the inner
expansion for all cubes Ce at the coarse level due to all the sources in cubes at the coarse level
that satisfy the far-field condition with respect to Cf. The outer-to-inner translation at the coarse
level is shown in Figure 4-4.

34

far-fiekd cubes
(c oarse grid)

. current cube 7
¢ oarse grid) //

Figure 4-4: Outer-to-Inner Translation at the Coarse Level

For all cubes Ce at the coarse level, we apply, for each child Cf of Ce the inner-to-inner
translation to translate the inner expansion for Ce to Cf’s center. The result is the inner expansion
for all cubes Cf at the fine level due to sources in cubes Cc at the fine level such that the parents
of Cf and Cec satisfy the far-field condition. The inner-to-inner translation from the fine level to
the coarse level is shown in Figure 4-5.

For all cubes Cf at the fine level we apply, for all cubes Cc at the fine level that satisfy
the far field condition and for which the parents of Cf and Cc don’t satisfy the far-field condition,
the outer-to-inner translation to translate Cc’s outer expansion to an inner expansion at Cf’s
center and sum the translated inner expansions. The result is the inner expansion for all cubes Cf
at the fine level due to all the sources in cubes at the fine level that satisfy the far-field condition
with respect to Cf. The outer-to-inner translation at the fine level is shown in Figure 4-7.

For all cubes Cf at the fine level, we compute the field at field points in Cf as the sum of
the far-field, which is given by the inner expansion computed in step 5, and the near-field due to
all sources inside cubes (including Cf) that don’t satisfy the far-field condition with respect to Cf.
The evaluation of the near-field is shown in Figure 4-6.

T

4

|

" D
]

 ——T"1

Figure 4-5: Inner-to-Inner Translation from Fine Level to Coarse Level

35

The two-level computation described above is easily extended to a multilevel cube
hierarchy. The efficiency of the multilevel calculation derives from step 5, where the outer-to-
inner translation only need to be applied at a level to cube pairs at the level for which the outer-
to-inner translation was not already accounted for at the higher levels. As a result the
computational cost of the translation operations is roughly the same at all levels of the cube
hierarchy. Also, by using approximately log N levels the computational cost of the step 6 is
roughly the same for all field points. Thus, the computational complexity of the multilevel FMM

is O'NlogN).
4.2.1.2.3 Translation Operations

In this section we use Rohklin’s translation theorems to specify the translation
operations: outer-to-inner, outer-to-outer and inner-to-inner. The theorems are expressed in terms

of far field signature functions on the unit sphere. For a scalar wave field as a field ¢(5c'), we

define the associated far field signature function d; (E) as follows

. (5)=lim fere ™ ¢ € +15

¢ () r—»wk ¢()] (4.2.1.18)
for points 5 on the unit sphere. When ¢(5c°) is defined by a multipole expansion, we may use the
spherical harmonic transform to evaluate the associated far field signature function. Accordingly,
expansions ¢C(C)(5E) and ¢§d) (55) and the finite degree inner expansions signature functions are
given by

. tar fie K current ;. hearfield
(AR N] ;
e lerms 'cube % terms (fine grid)

’’’’’’’’’’’’

]
7

Figure 4-6: Near-field Contributions at Fine Level

36

current new far-field terms
Sube

Figure 4-7: Outer-to-Inner Translation at Fine Level

§O6)=3 Y crzi Gy

=0m=—n

§96)=5 S orz)i

n=0m=-n

§06)=3. 3 Erz; €)'

n=0 m=—n

§96)=3. Yz 6)

n=0 m=—n

(4.2.1.19)

(4.2.1.20)

(4.2.1.21)

(4.2.1.22)

Rohklin’s translation theorems also make use of three operators defined on the unit
sphere: the harmonic projection operator ITy, the outer-to-outer/inner-to-inner translation operator

G(5;7,N) and the outer-to-inner translation operator M(S;7,N).

The spherical harmonic projection operator Iy is defined by
- 1 (.
I [F6)]= yry H5 W6 TY € Po;
sl
where

37

(4.2.1.23)

5,6-7)- Y406 1) Sanz €]

n=0 m=—n

The outer-to-outer/inner-to-inner translation operator G(E ;7N) is defined by

P.€7)

¥

G(E;F,N)=n2:(2n+1)'"jan

=3 3 i, () X1 2 6)

n=0 m=-n

The outer-to-inner translation operator M (5 ;7N) is defined by

¥.€:7)

MG;7,N)= ZN:(2n+ 1)k, (kfF
n=0

=3 S v, (2 G)C 1P 2,7 6)

n=0 m=-n

With these definitions in place, Rohklin’s translation theorems may be states as follows:

Outer-to-Outer Translation Theorem. The finite degree outer signature
functions¢, E(c)(E)and ¢ g(d)(fs')are related to one another by the identity

606)=11,, 6 d -2 N + N, JOE)

Outer-to-Inner Translation Theorem. The finite degree outer signature

(4.2.1.24)

(4.2.1.25)

(4.2.1.26)

(4.2.1.27)

(4.2.1.28)

(4.2.1.29)

functiond J(")(E)and the finite degree inner signature function ¢. é(e)(E)are related to

one another by the identity _
696)=11, 6Ee-d. N, + N JO6)

Inner-to-Inner Translation Theorem. The finite degree inner signature
functions ¢, Z,(e)(E)and¢.]U)(E)are related to one another by the identity

§96)=11, B6:7-2.N,+ N, JO6))

38

(4.2.1.30)

(4.2.131)

The importance of Rohklin’s translation theorems is that they reduce translation of
multipole expansions to pointwise multiplication on the unit sphere of a signature function by a
translation operator, followed by filtering.

4.2.1.2.4 Spherical Harmonic Synthesis/Analysis

In this section we specify Epton and Dembart’s method for filtering and interpolating
signature functions. Filtering of signature functions is needed for implementation of spherical
harmonic projection operator Iy used in Rohklin’s translation theorems stated above.
Interpolation and filtering of signature functions is needed to move discrete tabulations of the
functions on the unit sphere between levels without losing accuracy. First, we define spherical
harmonic analysis and synthesis for finite degree signature functions tabulated on a grid on the
unit sphere. Then we specify Epton and Dembeart’s algorithm for performing spherical harmonic
analysis and synthesis. Finally, we describe Epton and Dembart’s method for filtering and
interpolating signature functions.

For a finite degree signature function f (§)of the form

f6)= i ifn'”z;”) (4.2.1.32)

n=0 m=—n
. i 1 n . ~ .
a tabulation {f(ek,(l),). 0?2 k< N, -1,0</<N, -1y of f(5) on a grid of § values on the unit
sphere defined as follows (N, and Ny will be specified in terms of N .)

O=9,9,:= /2 [N,k =0; N, — 1
8,90, €+ Y2 /N =0:N, -1} s

®=$,:6, = 2m[N,,1=0;N, -1} w2134

The process of obtaining the coefficients {fn” :0<n<N ,|m| < n} from the tabulation
{f@ 0,):02 k<N, 1,0/ <N, —l}is called spherical harmonic analysis. The inverse
process of obtaining the tabulation {f@ 0,):02 k< Ny -1,0</ <N, —1; from the

coefficients {f"" :0<n<N ,lml <n } is called spherical harmonic synthesis.

Epton and Dembart’s algorithm for performing spherical harmonic analysis and synthesis
is based on the observation that the spherical harmonics Z, (E)can be viewed as trigonometric

polynomials in@ and¢ as follows

f6)= i ifn'"z,'," ©)= i S frzr@)e™ = £6.4) (4.2.1.35)

n=0 m=—n n=0 m=—n

where$.. 0,0)and Z]' ()=z"@)™ . Changing the order of summation gives

39

FO0)= D frar@Rm =2 fO0)r" (4.2.1.36)

m=-N n=|rr1 m=-N

where the functions {f ('")(9): -N<m<N } are given by

f00)= ;Ifn"' @) (4.2.1.37)

A linear system of equations relating the f," and the f @ 00 ,) is formulated by comparing

discrete and analytic expansions of f ('")(9) as follows.

()
Application of the discrete Fourier inversion theorem to f (9 ’¢)gives f 6)as follows

N¢—I

ey)=Nl_ ™ £0,4,) (4.2.138)

¢ 1=0

i . , £6) :
Application of the shifted cosine transform to for M even gives

No-1
f('")@)= z cos[pd]Fp(’") ..-m = even (4.2.1.39)

p=0

where the numbers {'— If”’) m=even—N<m<NO<p<N, - 1} are given by

Ny-1

N, -1
= Lt L1 $gm em = 4.2.1.40
i ; Cos[pe]{ N, Ze f (ek9¢1)} m = even .)

=0

Similarly, application of the shifted sine transform to f ("')(9)form odd gives
N -1
F00)= Y sinf(p+ DpF---m = 0dd (4.2.1.41)
p=0
where the numbers {‘- ém) m=o0dd,-N<m<NO<p<N, - l}are given by

No-1 Ny
F(m) = 1 _1_- im¢', . - d 4.21‘42
d ;W{]\“ ;e f@k"bl) m = odd ()

Expanding z,’ (9)in a cosine series for m even gives

N N n
F@6)= frzm@)=" Y A, cos[pb]--m = even (4.2.1.43)
n={m| n=|m| p=0

40

N N
=Y 3> A4, f. reos[pO }--m = even 4.2.1.44)
p=0 n=|m|
n2p

Similarly, expanding z,’ @)in a sine series form odd, gives

f06)=>rrz0)= Zﬂ"i%w sinf(p +1p }--m = odd (4.2.1.45)

n<fm| n=|m] p=0

N-1 N
:z ZA:pH.fnm sin[(p.}_lp]...m:Odd (42146)

p=0 n:lml’

n>p+

By comparing the discrete and analytic cosine expansions of f ('")(9)form even, we obtain
the following system of linear equations
;AT,pfn'" = F™...m = even (4.2.1.47)

n2p

Similarly, by comparing the discrete and analytic sine expansions of f ("')(9)form odd, we
obtain the following system of linear equations

g:lAffpﬂfn’" =F™-m=odd (4.2.1.48)

n2p+

Epton and Dembart’s method for filtering and interpolating signature functions consists of the
following computational steps to transform an input tabulation f @ 0)of a finite degree

signature function f (5)on the unit sphere to an output tabulation 2@, .9, Jof the
filtered/interpolated finite degree signature function g(fs')on the unit sphere.

Step ‘ ST Act‘i“on , \
1 Starting with a tabulation '@, , ,) of a finite degree signature function f (5)on
the unit sphere, perform the discrete Fourier transform in the¢ direction using an
FFT.
2 Split the transformed data into even and odd frequency data arrays.

Transpose the even and odd frequency data arrays.

4 Apply the discrete shifted cosine transform to the even frequency data array in
the © direction using a FFT. Similarly, apply the discrete shifted sine transform
to the odd frequency data array in the® direction using a FFT.

5 Solve the linear system of equations defined by equations 4.2.1-46 and 4.2.1-47

to compute f,".

41

Compute g, from f,". For filtering, g'is obtained from f," by dropping

n

terms. For interpolation, g, is obtained from f,” by adding zero terms.

7 Apply the inverse discrete shifted cosine transform to the even frequency data
array in the© direction using a FFT. Similarly, apply the inverse discrete shifted
sine transform to the odd frequency data array in the® direction using a FFT.

8 Transpose the even and odd frequency data arrays.

9 Combine the transformed even and odd frequency data into a single data array.

10 Perform the inverse discrete Fourier transform in the ¢ direction using an FFT

to compute the tabulation g@ b ,)of the finite degree signature function g(E)
on the unit sphere.

4.2.1.3 Output

An output set for the Method of Moments Benchmark consists of two binary files:
computed far-field and metrics report. The contents of the files are described in the sections

below.

4.2.1.3.1 Far-Field

The far-field computed at the field points, which are identical with the source points
specified in the Source Strength file, are output to the Far-Field file. The record types in the file
are specified in the table below. The first record in the file is a record of type 1 containing a
single integer number defining the number of field points. This is followed by a record of type 2
for each field point containing three floating point numbers (double) and a single complex
number (double) defining the three spatial coordinates of the field point and strength of the
computed far-field at the field point.

Record - Contents
Type -
1 integer
N
2 double float | double float | double float | double complex
X Y z E

42

4.2.1.3.2 Metrics Report

The Method of Moments Benchmark collects data for the evaluation of the metrics
specified in Section 4.2.1.5. The metric data is output in the Metrics Report output file. The

record types in the file are speci
type 1 containing three floating
performance metrics. The second record of the file is a recor
point numbers (float) defining the tertiary performance measures for the
The third record of the file is a record of type 2 containing six floating
defining the tertiary performance measures for the sph

fied in the table below. The first record of the file is a record of
-point numbers (float) defining the first and secondary
d of type 2 containing six floating-
translation operations.
-point numbers (float)
erical harmonic filtering/synthesis

calculations.
Record Cortents
Type , _
1 float float float
T1 T2 T3
2 float float float float float float
T1 T2 T3 T4 T5 T6

Implementers may add additional records to the Metric Report file to record data for evaluating
their implementation relative to the metrics for scalability with respect to problem size and
scalability with respect to processors, if these metrics apply to their implementation.

4.2.1.4 Acceptance Test

The Acceptance Test for the Method of Moments Benchmark consists of a comparison
between the reference far-field and the computed far-field. The reference far-field is specified in
the Far-Field Reference file. The number of digits of accuracy specified for the acceptance test is
also defined in the Far-Field Reference file. The contents of the Far-Field Reference file are

“described below.

The computed far-field at a field point passes the acceptance test if the computed far-field
and the reference far-field agree to the specified number of digits. To avoid possible self-
checking errors, implementers should perform the acceptance test on a computer separate from
the PIM computer that is being benchmarked. Implementers should report the results of the
acceptance test in the Acceptance Test Report file. The contents of the Acceptance Test Report
file are described below.

4.2.1.4.1 Far-Field Reference

The field points and their corresponding far-field strengths used in the acceptance test
are specified in the Far-Field Reference input file. The record types in the file are specified in
the table below. The first record in the file is of type 1 containing a single integer number
defining the number of field points. This is followed by a record of type 2 for each field point
containing three floating point numbers (double) and a single complex number (double) defining
the three spatial coordinates of the field point and strength of the far-field at the field point.

43

Record Contents
Type
1 integer
N
2 double float double float double float double complex
X Y 4 E

4.2.1.4.2 Acceptance Test Report

The results of the acceptance test are output in the Acceptance Test Report file. The
record types in the file are specified in the table below. The first record of the file is a record of
type 1 containing a single integer number defining how many field points failed the acceptance
test. If any of the field points failed the acceptance test, the first record is followed by a record
for each field point that failed the acceptance test. The records are of type 2 containing three
floating point numbers (double) and two complex numbers (double) defining the three spatial
coordinates of the field point and the strengths of the reference field and computed far-field at the
field point.

Record Contents
Type U
1 integer
N
2 double float | double float | double float | dble complex | dble complex
X Y z El E2

4.2.1.5 Metrics

The Metrics for the Method of Moments Benchmark consist of three measures:
performance, scalability with respect to problem size and scalability with respect to processors.
The metrics are described the sections below. The performance metric is a quantitative metric
measured directly by the Method of Moments Benchmark code and reported in the Metric Report
file. The scalability metrics are subjective measures and should be evaluated by the implementers
with respect to their PIM architecture.

4.2.1.5.1 Performance
The performance of an implementation of the Method of Moments Benchmark is

measured in wall-clock time. The performance measures are summarized in the table below. The
primary measure of performance is the total wall-clock time for the calculation of the far-field by

the multilevel FMM. The secondary measure of performance is the breakdown of the total time
into the total time for all translation operations and the total time for all spherical harmonic
filtering/synthesis calculations. The tertiary measures of performance are the breakdown of the
secondary measures into the total time for each of the six steps in the multilevel FMM as
specified in Section 4.2.1.

Metric ‘ ‘ Wall-Clock Time

primary | Total Time for Multilevel FMM

secondary Total Time for Translation Operations

tertiary Total Time for Translation Operations During

Initialize Sig. Functions at Finest Level

tertiary Total Time for Translation Operations During

Outer-to-Outer below Coarsest Level

tertiary Total Time for Translation Operations During

Outer-to-Inner at Coarsest Level

tertiary Total Time for Translation Operations During

Inner-to-Inner above Finest Level

tertiary Total Time for Translation Operations During

Outer-to-Inner below Coarsest Level

tertiary Total Time for Translation Operations During

Evaluation of Far-Field at Finest Level

secondary Total Time for Filtering/Synthesis

tertiary Total Time for Filtering/Synthesis During

Initialize Sig. Functions at Finest Level

45

tertiary Total Time for Filtering/Synthesis During

Outer-to-Outer below Coarsest Level

tertiary Total Time for Filtering/Synthesis During

QOuter-to-Inner at Coarsest Level

tertiary Total Time for Filtering/Synthesis During

Inner-to-Inner above Finest Level

tertiary Total Time for Filtering/Synthesis During

Quter-to-Inner below Coarsest Level

tertiary Total Time for Filtering/Synthesis During

Evaluation of Far-Field at Finest Level

The demonstration benchmark code includes timing subroutines. Calls to the timing
routines are embedded in the benchmark code to measure the specified performance metrics. The
benchmark code also includes a subroutine to output the performance metrics to the Metrics
Report file.

4.2.1.5.2 Scalability With Respect to Problem Size

The Method of Moments Benchmark includes a “flat plate” test series that sets the field
points equal to the source points and geometrically scales the number of points. Over this set of
test cases, a log/log plot of the total wall-clock time for the calculation of the far-field by the
multilevel FMM (the primary performance measure) versus number of points should give
approximately a straight line with slope +1. Deviations from this expected behavior give an

" indication of the scalability with respect to problem size of an implementation of the Method of
Moments Benchmark. The flat plate series is described in more detain in Section 4.2.1.8.

4.2.1.5.3 Scalability With respect to Processors

The flat plate test series can also be used to study the scability of an implementation of
the Method of Moments Benchmark with respect to processors. For a given size problem, a
log/log plot of the total wall-clock time for the calculation of the far-field by the multilevel FMM
(the primary performance measure) versus number of processors should give approximately a
straight line with slope —1, if the implementation scales linearly with the number of processors.
Deviation from the straight line indicates the extent of linear performance. Plotting the total time
versus number of processors over the set of test cases in the flat plate test series gives an
indication of how the scalability with respect to processor varies over problem size.

4.2.1.6 Baseline Source Code

Baseline source code is available at http://www.aaec.com/projectweb/dis.

46

4.2.1.7 Baseline Performance Figures

Baseline performance figures are available at http://www.aaec.com/projectweb/dis.

4.2.1.8 Test Data Sets

Test data sets are available at http://www.aaec.com/projectweb/dis.

4.2.2 Simulated SAR Ray Tracing

The Simulated SAR image process consists of three major steps:

. Geometry Sampling
e Electromagnetic Scattering Prediction
e Image Formation

Of these, the Geometry Sampling and the Image Formation steps take the majority of the
CPU time, apd present the most interesting sub-applications to build benchmarks around.

The Geometry Sampling is accomplished by using ray tracing to simulate the physical
optics part of the electromagnetic scattering problem. Here, rays are sent out from an idealized
synthetic aperture, and intersections between objects and these rays are found. At each
intersection, the information about the object intersected is determined and recorded. A specular
reflection ray is generated at the intersection point, and it is then fired into the object database.
This creates a recursive process that allows the radar energy to be followed as it bounces through
the target database. The rays are followed until a user-defined number of reflections have
occurred, or until the ray leaves the database area. This process results in a linked list of
intersection information that is called a ray history. The ray history is the output of the Geometry
Sampling process.

For this benchmark, the Geometry Sampling section is further broken down into two
subparts that, when put together, form the complete Geometry Sampling benchmark.

The first sub-part is a ray server. This consists of the intersection-finding part of the ray-
tracing problem. It tests a bounding box structure, described in detail later, to find a list of
objects that possibly intersect the ray under test. It then applies the intersection code for each
type of object in this list. Once all intersections are found, it returns the intersection that is closest
to the starting point of the ray under test.

The second sub-part is the Ray-Tracing Controller. This generates the grid of rays that
simulate the synthetic aperture and generates the specular reflection rays based on the intersection
information. It calls the ray server and passes a new ray from either the synthetic aperture grid or
a reflection ray. It also tests the ray before it is sent, to see if the maximum number of reflections
have been processed. This controller then takes the intersection information returned from the
ray server and creates the ray history by creating the linked list for each ray fired from the
synthetic aperture grid.

The Image Formation part of the simulated SAR benchmark suite takes an array of
electromagnetic responses and maps them into a rectangular grid of the slant plane. This
remapped EM array is then passed through a convolution that adds the effects of the system IPR.
The final step is to convert the complex image into something that can be displayed. To achieve
this, magnitude detection is performed on the complex image.

47

4.2.2.1 Input

The input for the Simulated SAR benchmark is divided into two parts: the inputs
for the Ray-Tracing portion of the benchmark, and a separate set of inputs for the Image
Formation portion. Each of these inputs specifications contain subsections for Input Variables
and Input Data. The Input Variables contain the information that would be contained in a
command line argument. The Input Data contains the databases used by each of the benchmarks.

4.2.2.1.1 Recursive Ray Tracer Input

4.2.2.1.1.1 Input Variables

Aperture The aperture specification gives the location of the radar in global
specification coordinates, a look direction vector, and a field of view (FOV) that
simulates the synthetic aperture. If the FOV is given as ZERO, then a
Parallel Projection is used instead of a Perspective Projection. In the
Parallel case the target is centered in the Aperture and the look direction
vector will give the azimuth and elevation angles need to place the
aperture in the correct position.

Number of sample | The number of sample points tells the ray-tracer the sample resolution in
points both range (Vertical) and cross range (Horizontal). This is directly
related to the radar resolution. Three sampling resolutions will be used
in this benchmark.

e 512 x 512 for a small, low resolution, sample.
e 2048 x 2048 for a medium sample.
e 4096 x 4096 for a large sample.

Maximum number | This will specify the maximum number of reflections that are to be

of reflections traced. This will be set to 3 for all benchmark runs.
Database This will include the database name that will be used to select between
Specifications the target databases specified in the following section. This

specification will also contain a target rotation (yaw, pitch, and roll) and
translation that positions the target in global coordinates.

4.2.2.1.1.2 Input Data

The target databases will consist of models built from both polygons and solid
geometry using Constructive Solid Geometry. Each target database will also contain a
hierarchical bounding-box structure. For the Polygon target model, we will assume triangular
facets or three-sided polygons. The file format of each model type is described below.

48

4.2.2.1.1.2.1 Polygon target model file format
The overall file format is as follows.

File header
Partl]
Sub-part 1
Sub-part 2
Sub-part n
Pare2
Sub-part 1
Sub-part 2
Sub-part n
Part-n
Sub-part 1
Sub-part 2
Sub-part n
File header
Target model name char[256] ASCII test description
Model bounding box float [3][2] Minimum X target value
Maximum X target value
Minimum Y target value
Maximum Y target value
Minimum Z target value
Maximum Z target value
Number of parts int Total number of modeled parts
Part format
Part name char{256] ASCII part description
Part bounding box float[3][2] Minimum X part value

49

Maximum X part value
Minimum Y part value
Maximum Y part value
Minimum Z part value

Maximum Z part value

Number of sub-parts int Total number of sub-parts

Sub-part format
Sub-Part name char[256] ASCII subpart description
Sub-Part bounding box float{3][2] Minimum X part value
Maximum X part value
Minimum Y part value
Maximum Y part value
Minimum Z part value

Maximum Z part value

Number of nodes int Number of facet vertices

Vertex list float[N][3] Number of nodes by x,y,z
Coordinates

Number of Facets int Number of 3-sided facets

Built from the above nodes
Facet list int [M][5] Number of facets by
vertex 1 index into vertex list,

vertex 2 index into vertex list,
vertex 3 index into vertex list,

Material index, and Surface index.

Here is an example file for a simple unit box with the lower left comer at (0,0,0). The
material type is 1 and the surface type is 3 for all facets.

50

Box

0.0
6

1.0 0.0

Front Face

0.0
1

1.0 0.0

Front Face

0.0

o 0O o0Oo

2
3

HHRNRHMOO®

1.0 0.0
0.0 0.0
0.0 1.0
0.0 0.0
0.0 1.0
4

4

Back Face

0.0

PFRMOHKHOO®

w N

1.0 1.0

Left Face

0.0
1

.0

OO OO

HNMNOOOOIK®O
w N
Lo

0.0 0.0

_Left.Face

0.0 0.0

R OoRrOo
oooo
oo
cocoo

= S
. - .
o o
E1

oot

g2]

w

Q

o

o R s
oocoo

w

™

Q

=2
ot
(=]

o)
o qQ -

o
o

=B oMo

0.0 0.0 1.0

0.0 0.0 1.0

1.0 0.0 1.0

1.0 0.0 1.0

1.0 0.0 1.0

1.0 0.0 1.0

1 3
1 3

1.0 0.0 1.0

1.0 0.0.1.0

51

4 1 3
4 1 3
Top Face
1.0 0.0 0.0 1.0 1.0 1.0
1
Top Face
0.0 0.0 0.0 1.0 1.0 1.0
4
0.0 0.0 1.0
0.0 1.0 1.0
1.0 0.0 1.0
1.0 1.0 1.0
2
124 1 3
13 4 1 3

Bottom Face

1.0 1.0 0.0 1.0 0.0 0.0
1

Bottom Face

1.0 1.0 0.0 1.0 0.0 0.0

4

0.0 0.0 0.0

1.0 0.0 0.0

0.0 1.0 0.0

1.0 1.0 0.0

2

124 1 3
13 4 1 3

42.2.1.1.2.2 CSG solid target model file format

For the CSG solid target models, we will use the BRL CAD .cg geometry
description file format. This is an older format, but it is easier to work with. The geometry
description file contains all the information required to define the physical components of a
geometry model and the operations that are required to construct it. The format of each line of
data is a detailed record format. The entire file is divided into four basic parts: title control,
primitive definitions, region definitions, and region identifications.

The title control section simply provides a name for the mode! and the units of
measure (millimeters, centimeters, meters, inches, or feet abbreviated as mm, cm, m, in, and ft).

The primitive definition section uniquely describes each of the primitive solids to
be used in the model construction (See Figure 4-8).

The region definition section identifies each constructed region and the Boolean
operation that is to be used to create it. Boolean operations will be performed in the order in
which they appear in the region definition section. As seen in the example of Figure 4-10, a
space or blank character may be used as an optional operator. If the operator is blank and the
following solid/region number is positive then the operator is assumed to be a "union".
Otherwise, if the solid/region number is negative then the operator is assumed the "difference”

The region identification section simply contains a list of all region IDs and their
associated attributes. Figure 4-10 contains a sample of a complete geometry description file.

52

There is one special line of data that is required in the description file that is not
part of the geometry description or construction. Between the region definition section and
region identification section, the ray tracer expects o find the value of -1 in columns 1-5; this is
used as a delimiter to mark the end of the region definition section.

TITLE record
Columns Contents
1-5 Model units (in, ft, mm, cm, m)
6-65 Name for targets
CONTROL record
Columns Contents
1-5 Number of primitives
6-10 Number of regions
PRIMITIVE DEFINITION records
See Table A
REGION DEFINITION records
Columns Contents
1-5 Region number
7-8 Boolean operator
9-13 Primitive number
14-15 Boolean operator
16-20 Primitive number
21-22 Boolean operator
23-27 Primitive number
28-29 Boolean operator

53

30-34 Primitive number
35-36 Boolean operator
37-41 Primitive number
42-43 Boolean operator
44-48 Primitive number
49-50 Boolean operator
51-55 Primitive number
56-57 Boolean operator
58-62 Primitive number
63-64 Boolean operator
65-69 Primitive number
71-80 Comments

Notes on Boolean operations:

“"DIFFERENCE” — A negative primitive number
“INTERSECTION * —~ A positve primitive number
“UNION” — ‘or’ in the Boolean operator column
The union operation is performed between the two
sets of primitives that are listed before and after an
‘or” operator. e.g.,2 2 -4or5 6 or7 -1
(region) (solids...)

Their operations for this example will be performed
in the following order:

1) DIFFERENCE between primitives 2 and 4

2) INTERSECTION between primitives 5 and 6
3) UNION the results of steps 1 and 2

4) DIFFERENCE between primitives 7 and 1

5) UNION the results of steps 3 and 4

In this example, implied parentheses exist around
(2 -4),(5 6)and (7 -1).

Other examples of operations include:

2 2 -4 6or7 -1

In this example, the DIFFERENCE is taken
between primitives 2 and 4, and then the
INTERSECTION is taken between that result and
primitive 6. A DIFFERENCE is taken between
primitives 7 and 1. The UNION of these results is
then taken.

54

REGION IDENTIFICATION record
Columns Contents
1-3 Region number
4-10 Component code number (1-9999)
11-15 Space code number (1-99)
16-20 Material code
21-30 (unused)
31-80 Region description
Geometry Description Record Formats
Half Space HAF
Arbitrary Tetrahedron ARB4
Polyhedron - 5 Vertices ARB)S5
Polyhedron - 6 Vertices ARB6
Arbitrary Wedge ARW
Right Angle Wedge RAW
Polyhedron - 7 Vertices ARB7
Polyhedron - 8 Vertices ARB8
Box BOX
Rectangular Parallelepiped
RPP
Triangular - faceted Polyhedron ARS
Truncated General Cone TGC
Truncated Elliptical Cone TEC
Truncated Right Cone TRC
Right Elliptical Cylinder REC
Right Circular Cylinder RCC
Right Parabolic Cylinder RPC
Right Hyperbolic Cylinder RHC
Elliptical Paraboloid EPA
Elliptical Hyperboloid EHY
General Ellipsoid ELLG
Ellipsoid of Revolution ELL
Sphere SPH
Elliptical Torus ETO
Circular Torus TOR

Cols 1-5 6:8 9-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80

No.

No.
No.

No.
No.

No.

No.
No.

No.
No.

No.
No.

No.
No.

No.
No.

No.
No.

No.
No.

No.
No.

No.
No.

No.
No.

No.
No.

No.
No.
No.

RPP
BOX

RAW

SPH
ELL

TOR

RCC

REC

TRC

EHY

EPA

RHC

ARW

RPC

ARB4

ARB5

xmin xmax ymin

VX vy VZ
Wx wy wz

Vx Vy VZ
H, H, H,

Vx Vy vz

Ve Vy 0V,

R

Vy Vy Vs
Ri R

Vi Vy, Vg
R

Ve V3V,
Ax Ay A,

Vx Vy v:
Ve, V, V.
Ay Ay A;

Vi V, V.
Ax Ay AI

Ve Vy Vs
Bx By Bg

Vi Vy, V.
H2, H2, H2

Ve V, V4
B, B, B

Xy Y, Z;
X3 Ys Z3

X1 Y, Z,
Xa Y3 Zs3
X5 Y5 ZS

ymax zmin

Hy
Dy

Dy
Wi

R

Ay

Ny

Hy

Hy
Dy

Dy
Wy

Figure 4-8. Solid Primitive Definitions

56

zmax

H,
D,

D,
W,

A,

N,

H,

H,

B,

H,

Hl1,
B,

H,
Z;
Zy

2
Z,

comments

comments
comments

comments
comments

comments

comments
comments

comments
comments

comments
comments

comments
comments

comments
comments

comments
comments

comments
comments

comments
comments

comments
comments

comments
comments

comments
comments

comments
comments
comments

Cols 1-5 6-8 9-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80

No. ARB6 X3 Y, A X, Y, Z4 comments
No. X3 Y3 Z3 X4 Y4 Z4 comments
No. Xs Ys Zs Xs Ys Ze comments
No. ARB7 Xy Y, YA X, Y, A comments
No. Xs Ys Z3 X4 Y Z4 comments
No. Xs Ys Zs Xs Ys Zs comments
No. X4 Y, Z7 comments
No. ARBS X, Yy y A X, Y, Z2 comments
No. X3 Ys Z3 X4 Y4 Z4 comments
No. Xs Ys Zs X6 Ys Zg comments
No. X+ Y7 Z7 Xs Ys Zs comments
No. TEC Vy Vy V. H, H, H, comments
NO. Ax Ay Az Bx By Bz comments
No. ratio : comments
No. " TGC Vx Vy V2 H, Hy H, comments
No. Ay Ay A By By B. comments
No. T(A) T(B) comments
NO. HAF Nx Ny Nz Dh Comments
No. ETO Vx Vy V. Ny N, N, comments
No. Cx Cy C. R Ra comments
No. ELLG Vy Vy Vz Xy Xy X, comments
No. Yx Yy Y. Zy Zy /8 comments
No. ARS M N comments
No. Xg Yin Ty X2 Yz Zip comments
No. Xin Yin LN

NO. . XQ, 1

NO. xM,l

No. XmMN YmMN ZMN

Figure 4-9. Solid Primitive Definitions (continued)

For ARS the symbol 'M' represents the number of curves and the symbol 'N' represents
the number of points required to define the curve with the most number of points. (eg. If M = 2
where curve 1 requires 3 points to define it and curve 2 requires 4 points then the value of N must
be 4.)

The Equation for a half plane is: NxX + NyY + NzZ = Dh

57

Where V is the vector, D is the depth vector, H is the height vector, W is the width
vector, N is the normal vector, R is the radius, A is the semi-major axis of ellipse, and B is the
semi-minor axis of ellipse.

An example file follows.

m Simple test object in meter units

22

Ipp -1.5000 1.5000 -1.5000 1.5000 -1.5000 1.5000
2rpp -0.5000 0.5000 -0.5000 0.5000 -0.5000 0.5000
1 -2

2 2

-1

1100 0 0 O mainbox

2100 2 0 O insidebox

Figure 4-10: Example.cg file of a hollow box
4.2.2.1.2 Image Formation Inputs

4.2.2.1.2.1 Input Variables

"The input variables for the image formation benchmark will be stored as ASCII text.
Each item will be on a separate line, with the variable number first followed by a text comment
identifying that line of the input variable file. The system IPR will be written out in the text file in
row column order. There will be a separate Input Variable file for each input data set.

Input data file name | This will be the name of the Input data file that will be used with this

Input Variable file.
Aperture The aperture specification here will include the number of samples in
specification range and cross range and image resolution in meters.
System IPR This will be an array of floats representing the convolution kernel. The

kernel can be as small as 3 x 3, where only the main lobe information
will appear in the final image, or as large as 35 x 35, where numerous
side lobes appear in the final image.

4.2.2.1.2.2 Input Data

The input data arrays are EM responses from the ray history arrays. The EM
responses are stored in complex format. The ray history and EM responses will come in three
sizes and in both float and double precision formats. These are ray histories with EM responses
added right after the subpart name.

58

e A small array at 512 X 512 sample points,
e A medium array at 2048 X 2048 sample points, and
e A large array at 4096 X 4096 sample points.

4.2.2.2 Algorithmic Specification

4.2.2.2.1 Recursive Ray Tracing Benchmark Algorithm Specifications

Initializaton:
& Read Inputs Generate
v R:\g P Synthetic
Aperture
ot —H | pug O
Data Bounding Emanation
Box Plane
Structure
I ntersection
Fire Emanation Calculations |—| Ray History
Plane Ray (Ray Server) Update

Reflection —| FireReflection
Calculation Ray

Ray History
Output

A? Did thelast ray have and intersection
(Yes- continue No - Therayshas left the
database)

B? Isthereflection Count <Max #of Reflections
(Y es- Continue No - End of thisray)

C? Arethey any moreraysto befired from the
Emanation Plane
(Yes- FireNext Ray No- Output Ray History

59

4.2.2.2.1.1 Initialization

The initialization process reads in the input variables and input database. It then
builds the bounding-box structure and object structure from the input database. The bounding-
box structure contains the bounding hierarchy and each bounding surface contains tags to the
object structure. In the initialization the Emanation Ray History pointer array is created and
initialized.

Both the bounding-box structure and the object structure should be available to all
routines.

Because the BRL-CAD.cg format does not support bounding boxes, a separate file
will be provided that contains the bounding information. The format of this bounding-box file is
the same as that of the polygon models, except it will contain no polygon data. The object and
sub-object name will match the names found in the .cg file thus providing the linkage between the
objects and their bounding boxes.

4.2.2.2.1.2 Generation of the Emanation Plane

Using the aperture specification and the number of sample points, from the input
data, an Emanation plane is generated.

If the FOV is ZERO, and it always will be for this benchmark, this means that a
parallel projection is to be used. With this projection, all the rays are fired in the look direction.
The only thing that needs to be determined is the position and scale of the sample points. For this
benchmark, we will assume that for the parallel projection case the target will be centered in the
sample space and that the top-level bounding box just fits into the sample window. This means
that the target translation is ignored and only the rotation is used. Each point in the top level
bounding box must be put through the target rotation matrix and then through the viewing matrix.
The viewing matrix is built from the rotations needed to rotate the target into the viewing azimuth
and elevation. This rotation can be derived using the following pseudo code.

Assume that z is up and create a vector up = [0,0,1]. Find the vector
that is the cross product of the lookat vector and the up vector.
Make sure that this new vector is a unit vector and call it alpha
‘Now find the cross product of the loockat vector and the alpha vector.
Again, make sure it is a unit vector and call .it. Beta
The 3x3 Euler rotation matrix is then:

Alpha i, Alpha_j, Alpha_k

Beta_ i, Beta_j, Beta_k

Lookat_i, Lookat_j, — Lookat_k

Keep this viewing rotation matrix around, as it will be used in the generation of the
emanation rays in the next step. It is possible at this point to combine the target rotation matrix
and the viewing matrix, so only one matrix multiplication has to be done.

When these rotations are applied to the top-level bounding-box points, a new
bounding box is derived that shows the target extent in the viewing frame, if the maximum
distance in the horizontal and vertical directions are taken. The Delta size of the viewing window
or Emanation plane is known in target units. To get the needed size of an individual pixel, take
the larger of the two and divide by the number of sample points in that direction. This benchmark
will assume square pixels; thus, a pixel will have the same dimension in both the vertical and
horizontal. This same bounding information can be used to center the target in the sample space.

60

The result of this will be a (x, y) coordinate in viewing space based on the row and column in the
sample space.

The distance from the radar to the center of the target is found by subtracting the
target translation vector from the radar location vector. The magnitude of this difference vector is
the desire distance number.

This routine is the beginning of the outside loop the Ray tracing system. It takes the
information derived in generating the Emanation plane and produces global starting coordinates
and direction vectors for the out going rays. Every time it is called a new starting ray position
and direction vector are calculated for the next sample point in the Emanation plane.

It generates the starting point in global coordinates by taking the row and column
numbers and using the scaling information from the generation routine to derive an X, y, Z point
in viewing space. The distance from the center of the target to the radar is added to the z value to
arrive at the viewing coordinate. This is then converted into a global coordinate by passing this
vector through the inverse of the viewing and target rotation matrices. This global coordinate is
then the starting position for the current ray.

The direction vector for this benchmark, because we are only using parallel
projections, is just the look direction vector from the input variables, aperture specification.

A flag is set that lets the ray history update routine know that a new emanation plane
rays has been fired. The starting position and direction are then passed to the Ray Server.

This routine is called on the first ray, when the previous ray leaves the target
database, or when the maximum number of reflections, of the previous ray, has been reached.

The ray server receives a ray, starting position and direction vector, and determines
what, if any, objects in the target database this ray intersects. Once the intersections are found,
“they are processed and the nearest surface intersection is returned. The Ray Server is divided into
two major parts.

4.2.2.2.1.5 Bounding-Box Intersections

The first section is the bounding box intersection process. Here the bounding-box
hierarchy is tested against the ray. The top level bounding box is tested first. Ifit is intersected
then each object bounding box is tested. If the current ray does not intersect the top-level box, the
ray server returns a flag that no intersections were found. This process continues down the
bounding box hierarchy until all possible intersected objects have been found.

4.2.2.2.1.6 Object Intersection

The second section finds the actual points of intersection, if they exist, for each
object identified in the above process. Once the intersection points have been identified they are
sorted by distance from the ray starting point and the nearest intersection is returned. The ray
server also returns the surface normal information at the intersection point.

61

Polygon Models

With Polygon models, this is a straightforward process of testing each
polygon, in each sub-object, against the ray under test. If an intersection
is found it is recorded in the intersection list array. When all the
intersections are found, the intersection nearest the starting point of the
ray under test is return along with the surface normal at that polygon. In
this benchmark, all the polygons are three sided and thus the surface
normal is easily calculated using the polygon vertices. It should be noted
that the normal is the same for any point on that polygon.

Solid Models
CSG

with

With solid models and CSG operators, things are a little more difficult.
Finding the intersections with the solid models requires more effort, due
to their more complex shapes. The intersections come in pairs. One
intersection enters the object and the other leaves the object. The real
work comes in using the intersection pairs and the CSG operators to find
the true intersection point for any object. The supported CSG operators
can be seen in Figure 4-11. If a ray were to pass through center top of
the cube in Figure 4-11, the intersection pairs would be operated on as
shown in Figure 4-12. The CSG operations are executed as written in the
.cg file.

It is noted here, that with solids, the bounding boxes for objects surround
a complete CSG object. The sub-object bounding boxes surround the
basic solid primitives that are combined, using the CSG operators, to
form the complete CSG object. In the example in Figure 4-11, the object
bounding box would surround the cube and cylinder. The sub-object
bounding boxes would be around the cube as sub-object 1 and cylinder
as sub-object 2.

62

@ €

Block and Cylinder Difference
(subtraction)
Union Intersection

Figure 4-11: Supported CSG Operators

63

Cube - Cylind
Cube Cylinder ube - Lylinder
EP
EP
LP
EP
Lp LP
Raw Edge Pairs Difference
Cube or Cylinder Cube + Cylinder
EP
EP
LP
LP
Union Intersection

Figure 4-12: CSG Operators on Intersection Pairs

All the surface intersection algorithms needed for this benchmark can be found in "
An Introduction to Ray Tracing", Edited by Andrew S. Glassner, Academic Press, ISBN 0-12-
286160-4. This is referenced in the Bibliography section, but it is given special note here. This is
a single resource that has much, if not all, the needed information about Ray Tracing algorithms.
It is felt that the coverage of intersection algorithms on pages 33 through 119 of that text is much
better and less confusing than what this author could put forth.

4.2.2.2.1.8 Ray History Update
This routine handles the ray history linked list. There are three possible functions
that may run.

If the ray that is being processed is a new ray from the emanation plane, the ray
history update routine starts a new ray history link and generates a new node structure, initializes
the node, records the information returned by the ray server, and adds one to the total intersection
count.

If the ray that is being processed is a reflected ray, the ray history update generates a
new node structure, initializes it, and places the appropriate links in the new node, the previous
node, and records the information returned by the Ray Server. It also updates the previous node
with the reflected ray information that is now available. It then adds one to the total intersection
count.

If the ray that is being processed returns from the Ray Server without finding an
intersection, the ray history server updates the current node with the reflected ray information and
then does nothing else.

The node generation consists of allocating a new section of memory for the new
node structure and then initializes it by entering a NULL into the previous_node and next_node
pointer variables.

The process of starting a new ray history link involves placing a pointer to the newly
generated node structure into the emanation ray history pointer array. This array has the same
dimensions as the emanation plane and array keeps a pointer to each ray history node associated
with a new ray being fired from the emanation plane.

4.2.2.2.1.9 Reflection Calculations

A reflection ray is calculated for every intersection point as long as the maximum
number of intersections has not been exceeded. The process of finding a reflection ray is base on
Snells' law for a perfect specular reflection. This law states that an incoming ray of will reflect at
an equal and opposite angle, relative to the normal at the reflection point:

65

SRR A ST TR s e e
J«» v ‘fv"'v-r-. *:‘f".a'.&’: AR RN S A u’“ 139.:.! T #’.»i‘d$df¢i‘§‘§$

The formula for the direction of a specularly reflected ray is
R=1-2(NeI)N

where 1 is the incident ray, N is the normal at the reflection point, and R is the reflected ray.

4.2.2.2.1.10 Reflection Ray Firing

The reflection ray firing is similar to the Emanation ray firing. In this case, the
reflected ray calculated above becomes the look direction vector and the intersection point
becomes the starting position of the ray. These are passed to the Ray Server.

4.2.2.2.1.11 Ray History Output

After all the emanation rays have been fired and their reflection paths followed,
the final step in the geometry sampling process is to output the ray history. This is done by using
the emanation ray history pointer array to follow each ray history. As each node is traversed the
data in the node structure is written out to the ray history file in the form specified in section
4.2.2.3.1. As this data is written out, the pointers for previous_node and next node get replace
with index numbers as if each node was an entry in a large 1-D array of nodes. Those nodes that
have NULL pointers are replaced by -1.

4.2.2.2.2 Image Formation Benchmark Algorithm Specifications
The Image Formation process consists of three steps that convert the EM

Contributions into a slant plane SAR Image.

4.2.2.2.2.1 Mapping EM contributions

The first step in the image formation process is to map the EM contributions of each
ray history into the slant plane. The slant plane image is a grid of cells measured in range and
cross range (see Figure 4-13).

66

slant range plane

* | Emanation /
'/ Plane

target surface

. A
e scquentially cast rays paraliel to T 10 generate ray
history of target sample points

o compute integrated reflectivity for each sample point
o compute stant range coordinates for unique contiibution

o weight reflectivity by spatial impulsc response and sum
into slant range plane (input centered convolution)

Figure 4-13: Formation of the SAR Image

The first intersection EM contribution is mapped into this plane based on the position in
the emanation plane, for the cross range position, and the distance from the firing point to the
intersection point, for the range position. The multiple reflections are mapped to a mean aspect
and more distant range consistent with their appearance in the SAR imagery (See Figure 4-14).

67

Range

Fire

Cross-Range

For Reflection A:

Contribution is mapped directly at A in SAR image

For Reflection B:
Contribution is mapped at B' in SAR image
Range equals total distance (d1+d2+d3) divided by 2

Cross-range position is average of cross-range
positions of A and B.

Figure 4-14: SAR Mapping of Returns

This process is followed for each ray history and each EM contribution for each
reflection resulting in a complex data array.

68

4.2.2.2.2.2 IPR Convolution

Once the EM scattering is mapped to the slant plane, it must be convolved with the
system IPR. This is an input centered convolution. The convolution edge effects are accounted
for by mirroring the edge pixels of the slant plane. Pixels are copied from the left and right
edges, range, and then copied from the top and bottom, cross-range. This insures the corners of
the mirrored images are filled correctly. The number of pixels copied is equal to half of the IPR
convolution width. This is a standard 2-D convolution process.

4.2.2.2.2.3 Detection

The final process in the Image Formation sequence is the Detection process. This is
nothing more than finding the Magnitude image of the complex image plane. The output from
this process forms a viewable, or real-valued, image and is the desired output for this portion of
the benchmark.

4.2.2.3 Output
4.2.2.3.1 Recursive Ray Tracing Benchmark Output

The output for the Recursive Ray Tracing Benchmark is a link list of the intersection
information for each sample in the aperture. This ray history file will be a binary file based on an
array of the following structure with the first number in the file being the number of array entries

int number of_ entries
struct Ray History {
char object_name [256];
char part_name [256];
char subpart_name [256];

float intersection_x;
float intersection_y;
float intersection_z;
float normal_vec_i;
float normal_vec_j;
float normal_vec_Xk;

float ray_length;
float ray_start_i;

float ray_start_j;

float ray_start_k;

float ray vector_i;

float ray_vector_j;

float ray_vector_k; ;
float reflection_vector_ij;
float reflection _vector_j;-
float reflection _vector_k; -

int previous_node;
int next_node;

If the previous_node value is -1 this is the beginning of a ray history. If the next_node has
a value of -1 this is the last intersection point for this ray history. Using the first intersection
point and the normal of each ray history one can create a shaded image of the target under test.
This can be a good tool for evaluating the ray tracer.

69

4.2.2.3.2 Image Formation Benchmark Output

The outputs for the Image Formation Benchmark will be, float or double, binary files
output at each stage of the process. The final binary file, after detection, is the only file that is not
complex. When displaying these images one should us a dB scaling do to the nature of the
detected image. Using -40dB down from the peak value will provide a good-looking image.
Other conversions that don't account for the wide bandwidth in the final image may hide defects.
When doing a timing run, only the final detected or real valued image should be output. The in-
between images are used only to validate each step in the process.

4.2.2.4 Acceptance Test

A given data set will be considered successfully executed when the processing
sequence results match with the corresponding output provided with the benchmark. Precision is
discussed in Section 3.7.

4.2.2.4.1 Acceptance Test for Recursive Ray Tracer Benchmark

It must be realized that small differences in intersection location and in the calculation
of the normal can result in large errors after several reflections. Acceptance of this section of the
benchmark should look at each level in the ray history to see if it meets the tolerances discussed
in Section 3.7.

4.2.2.4.2 Acceptance Test for the Image Formation Benchmark

An output data set for each step in the process is provided and a match should be
achieved for each step in the process.

4.2.2.5 Metrics
4.2.2.5.1 Metrics for Recursive Ray Tracer Benchmark

The primary metric for the Recursive Ray Tracer Benchmark is the total time to

complete the evaluation of all rays in the given aperture. Secondary metrics are based on

- processor loading as a function of time. Also where possible a metric should be attempted that

gives the scalability ratios for input database size, aperture resolution, and number of processors.

These secondary metrics will provide useful information on known problems with parallel ray-
tracing applications.

4.2.2.5.2 Metrics for the Image Formation Benchmark

The primary metric for the Image Formation benchmark is total time to complete all the
steps with the given input data set. A secondary metrics consists of the individual times for each
step in the Image Formation process.

4.2.2.6 Baseline Source Code

Baseline source code is available at http://www.aaec.com/projectweb/dis.

4.2.2.7 Baseline Performance Figures

Baseline performance figures are available at http://www.aaec.com/projectweb/dis.

70

4.2.2.8

4.2.2.9

(1]

(2]

(3]

[4]

(5]

(6]

[7]

8]

[9]

[10]

[11]

(12]

Test Data Sets

Test data sets are available at http://www.aaec.com/projectweb/dis.

References
Ray Tracing References

K. Bouatouch and T. Priol. Parallel space tracing: An experience on an iPSC hypercube.
In N. Magnenat-Thalmann and D. Thalmann, editors, New Trends in Computer Graphics
(Proceedings of CG International '88), pages 170-187, New York, 1988. Springer-
Verlag.

J. G. Cleary, B. M. Wyvill, G. M. Birtwistle, and R. Vatti. Multiprocessor ray tracing.
Computer Graphics Forum, pages 312, 1986.

F. C. Crow, G. Demos, J. Hardy, J. McLaugglin, and K. Sims. 3d image synthesis on the
connection machine. In Proceedings Parallel Processing for Computer Vision and
Display, Leeds, 1988.

M. A. Z. Dipp’ ¢ and J. Swensen. An adaptive subdivision algorithm and parallel
architecture for realistic image synthesis. ACM Computer Graphics, 18(3):149-158, Jul
1984.

S. A. Green and D. J. Paddon. Exploiting coherence for multiprocessor ray tracing. IEEE
Computer Graphics and Applications, pages 12-27, Nov 1989.

H. Kobayashi, S. Nishimura, H. Kubota, T. Nakamura, and Y. Shigei. Load balancing
strategies for a parallel ray-tracing system based on constant subdivision. The Visual
Computer, 4(4):197-209, 1988.

A. J. F. Kok. Ray Tracing and Radiosity Methods for Photorealistic Image Synthesis.
PhD thesis, Delft University of Technology, jan 1994.

T. T. Y. Lin and M. Slater. Stochastic ray tracing using SIMD processor arrays. The
Visual Computer, 7:187-199, 1991.

D. J. Plunkett and M. J. Bailey. The vectorization of a ray-tracing algorithm for improved
execution speed. IEEE Computer Graphics and Applications, 5(8):52—60, aug 1985.

T. Priol and K. Bouatouch. Static load balancing for a parallel ray tracing on a MIMD
hypercube. The Visual Computer, 5:109-119, 1989.

E. Reinhard. Hybrid scheduling for parallel ray tracing. TWAIO final report, Delft
University of Technology, jan 1996.

I. D. Scherson and C. Caspary. A self-balanced parallel ray-tracing algorithm. In P. M.
Dew, R. A. Earnshaw, and T. R. Heywood, editors, Parallel Processing for Computer
Vision and Display, volume 4, pages 188-196, Wokingham, 1988. Addison-Wesley
Publishing Company.

71

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[1]

(2]

(3]

(4]

[5]

(6]

(7]

L. S. Shen, E. Deprettere, and P. Dewilde. A new space partition technique to support a
highly pipelined parallel architecture for the radiosity method. In Advances in Graphics
Hardware V, proceedings Fifth Eurographics Workshop on Hardware. Springer-Verlag,
1990.

E. R. Frederik, W. Jansen . Rendering Large Scenes Using Parallel Ray Tracing. Parallel
Computing, pages 873-885, 1997

T. Wilson, N. Doe. Acceleration Schemes for Ray Tracing. Report Number: CS-TR-92-
22, Department of Computer Science, University of Central Florida, September 1992.

R.L. Cook, T. Porter, L. Carpenter. Distributed Ray Tracing. Computer Graphics
(Proceedings of SIGGRAPH 1984), 18(3), 137-145, July 1984.

R.L. Cook. Stochastic sampling in computer graphics, ACM Transaction in Graphics
5(1), 51-72, January 1986.

A. S. Glassner (Editor), An Introduction to Ray Tracing, Academic Press 1989.

Ray Tracing Bibliography, http://www.cm.cf.ac.uk/Ray.Tracing/RT.Bibliography.html

Simulated SAR References

D.J. Andersh, M. Hazlett, SW. Lee, D.D. Reeves, D.P. Sullivan and Y. Chu, "Xpatch: A
high frequency electromagnetic-scattering prediction code and environment for complex

three-dimensional objects," IEEE Antennas & Propagation. Magazine, vol. 36, pp.65-69,
1994.

J. Baldauf, S'W. Lee, L. Lin, SK. Jeng, S.M. Scarborough, and C.L. Yu, "High
frequency scattering from trihedral corner reflectors and other benchmark targets: SBR

vs. experiment," IEEE Transacrions on Antennas and Propagation, vol. 39, pp. 1345-
1351, 1991.

R. Bhalla and H. Ling, Image-domain ray tube integration formula for the shooting and
bouncing ray technique, University of Texas Report, NASA Grant NCC 3-273, July
1993.

R. Bhalla and H. Ling, "A fast algorithm for signature prediction and image formation
using the shooting and bouncing ray technique,”" to appear in IEEE Transactions on
Antennas and Propagation, 1995.

G. Franceschetti, M. Migliaccio, D. Riccio, and G. Schirinzi, "SARAS: A Synthetic
Aperture Radar (SAR) Raw Signal Simulator," IEEE Transactions on Geoscience and
Remote Sensing, Vol. 30, No. 1, January 1992.

G. Franceschetti, M. Migliaccio, and D. Riccio, "SAR Raw Signal Simulation of Actual
Ground Sites in Terms of Sparse Input Data," IEEE Transactions on Geoscience and
Remote Sensing, Vol. 32, No. 6, November 1994.

D.E Herrick and 1.J. LaHaie, SRIM Polarimetric Signature Modeling, ERIM IR&D Final
Report 675805-1-F, December 1988.

72

(8]

[9]

[10]

[11]

[12]

[13]

[14]

(15]

[16]

(17]

D.E Herrick and B.J. Thelen, "Computer Simulation of Clutter in SAR Imagery,"
Proceedings of the Progress in Electromagnetics Research Symposium, Cambridge, MA,
July 1991

D.E Herrick, "Computer Simulation of Polarimetric Radar and Laser Imagery," in Direct
and Inverse Methods in Radar Polarimetry, W.-M. Boemer ef al. (eds), Klumer
Academic Publishers, The Netherlands 1992.

D.E Herrick, M.A. Ricoy, and W.D. Williams, "Modeling of Foliage Effects in UHF
SAR", Proceedings qfthe Ground Target Modeling and Validation Conference,
Houghton, MI, August 1994.

D.E Herrick, M.A. Ricoy, and W.D. Williams, "Synthesizing SAR Signatures of Ground
Vehicles with Complex Scattering Mechanisms”, Proceedings of the Ground Target
Modeling and Validation Conference, Houghton, MI, August 1994.

E.R. Keydel, D.E Henick, and W.D. Williams, "Interactive Countermeasures Design and
Analysis Tool," Proceedings of the Ground Target Modeling and Validation Conference,
Houghton, MI, August 1994.

S.W. Lee and D.J. Andersh, On Nussbaum Method for Exponential Series,
Electromagnetic Laboratory Technical Report ARTI-92-11, University of Illinois,
Urbana, November, 1992.

H. Ling, R.C. Chou, and S.W. Lee, "Shooting and Bouncing Rays: Calculating the RCS
of an arbitrarily shaped cavity," IEEE Transactions on Antennas and Propagation, Vol.
37, pp. 194-05, 1989.

J.M. Nasr and D. Vidal-Madjar, "Image Simulation of Geometric Targets for Spaceborne
Synthetic Aperture Radar", IEEE Transactions on Geoscience and Remote Sensing, Vol.
29, No. 6, November 1991.

N.D. Taket, S.M. Howarth, and R.E. Burge, "A Model For the Imaging of Urban Areas
by Synthetis Aperture Radar," JEEE T ransactions on Geoscience and Remote Sensing,
Vol. 29, No. 3, May 1991.

M.R. Wohlers, S.Hsiao, J. Mendelsohn, and G. Gerdner, "Computer Simulation of

Synthetic Aperture Radar Images of Three-Dimensional Objects," IEEE Transactions on
Aerospace and Electronic Systems, Vol. AES-16, No. 3, May 1980.

73

4.2.3 Image Understanding

Algorithms were selected for this benchmark that perform spatial filtering to determine
regions of interest (ROIs) and operate on a set of ROIs. The Image Understanding benchmark
consists of a sequence of components depicted in Figure 4-15. Also included in the figure are
names for input parameters, images, and intermediate output at different parts of the sequence,
which are referred to later in this document. The morphological filter component provides a
spatial filter to remove background clutter in the image. Next, the ROI selection component
applies a threshold to determine target pixels, groups these pixels into ROIs, and selects a subset
of ROIs depending on specific selection logic. Finally, the feature extraction component operates
over and computes features for the selected ROIs.

thresholdLevel
minArea
maxRatio distanceShort
K selectNumber distancelong
* + regions
v W 0 features

—> Morphological |—» ROI |———» Feature ——Pp»
Filter Selection| i Extraction

Figure 4-15: Image Understanding Sequence

The input required by the sequence is a set of parameters and an image, V. The first step in
the sequence is a spatial morphological filter component generating image W. Then, the ROI
selection component performs a thresholding and groups connected pixels into ROIs (or targets)
contained in image #. This component then computes initial features for each ROI in image W,
and selects a list of ROIs depending on the values of these features. These selected ROIs are
stored in object image, O. The initial features for each selected ROI are stored in list, regions.
Lastly, the feature extraction component computes additional features for the selected ROIs. The
output at the end of the sequence is a feature list, features, with both sets of features computed for
each selected ROL

4.2.3.1 Input

An input data set for the Image Understanding benchmark, which contains all input
required for a single run of the benchmark, is provided in one binary input file, in the following
order:

input image ¥ (stored as an array of short integers)
morphological kernel X (stored as an array of unsigned bytes)
thresholdLevel (short integer)

minimum acceptable area value, mindrea (integer)

maximum acceptable perimeter-to-area ratio, maxRatio (float)

74

number of ROIs to select, selectNumber (integer), and

distanceShort and distanceLong (integers).

The above values are provided in binary representation for an 8-bit unsigned byte, 2-byte
short integer, 4-byte integer, or 4-byte float as described in Section 3.6. References to these
inputs are found in Figure 4-15 and in the sections describing each component of the sequence
below. Descriptions or formats for input image V and kernel K are provided in the following

subsections.
4.2.3.1.1 ImageV

Images provided as input for the benchmark are rectangular, with square pixels, and
stored in row-dominant order. Let image V have X columns and Y rows, and v(x,y) be any pixel
in V where 0 <x < X and 0 <y <Y, as shown here:

v(0,0) v(1,0) v(2,0) v(X-1,0)

v(0,1) v(1,1) v(2,1) v(X-1,1)

v(0,2) v(1,2) v(2,2) v(X-1,2)
v(0,Y-1) v(1,Y-1) v(2,Y-1) v(X-1,Y-1)

Figure 4-16: Sample Image V with X columns and Y rows

Preceding the image data are two integers, representing the number of columns and the
number of rows, respectively. Next, pixel values are provided, as short integers, in row-dominant
order, as shown in the following table. Therefore, an image with three rows and five columns
requires thirty-eight bytes, where the first eight bytes contain two 4-byte integer values indicating
the number of columns and rows, followed by fifteen 2-byte short integer pixel values.

75

Table 4.2.3-1: File containing byte image V

byte offset { ' | contents byte offset ¥ contents byte offset 4 “contents -
0 | 62X | vl . | .
2 X 842X v(0,1) . .
4 R . 6+2XY-2X | v(X-1,Y-2)
6 Y . . 8+2X¥-2X | v(0,Y-1)
8 v(0,0) 6+4X W(X-1,1) . .
10 v(1,0) 8+X | v(02) . .
R . . . 4+2XY V(X-2,Y-1)
. . . . 6+2XY | v(X-1Y-1)

4.2.3.1.2 Kernels

Kemels are small images that define a neighborhood or window to be used in the
processing of a larger image. Kemnels are provided in the same format as images and an example
of the file containing a kernel is contained in Table 4.2.3-2 below. Note that a kernel with three
rows and five columns requires twenty-three bytes, where the first eight bytes contain two 4-byte
integer values indicating the number of columns and rows, followed by 15 unsigned-byte pixel
values.

Table 4.2.3-2: File Containing Unsigned Byte Kernel X

byte offset | contents | | byte offset 4| contents byte offset ¥ contents
0 ‘ 8 | k00 . .
1 X 9 | k(10 . .

2 . o T+XY-X | k(X-1,Y-2)

3 e o 8‘+XY4-X k(0,Y-1)
 4 ‘ L THEX k(X-1,0) o g o
5 Y X k(0,1) e .

6 o o 6+Xif k(X-2,Y-1)

7 . . TTHXY | KXLY-D)

A kernel-oriented procedure uses the location of the kernel’s center pixel as the
location in the output image for the output value. To facilitate this, kernel rows and columns
always contain an odd number of pixels.

76

4.2.3.2 Algorithmic Specification

The Image Understanding benchmark consists of a series of operations to be performed,
in sequence, using given image and operating parameters as initial input. Output from the
benchmark consists of a table of feature values for each ROI selected. All of the operations
utilize the result from the prior step as input. In addition, the ROI selection and feature extraction
components utilize both the prior result and the input image, V, as depicted in Figure 4-15. Each
component in the sequence is described individually below.

4.2.3.2.1 Morphological Filter

The morphological filter component chosen for the benchmark uses a structuring
element, or kemnel, K, that is a two-dimensional image with dimensions that are odd. Let V
represent the input image and define the morphological operations, erosion (*) and dilation) as

follows:
[V K] = MIN[v(x+m, y+n)] m,n €Ros(K), k(m,n) =0 (4.2.3.1a)
[Vfl(] = MAX[v(x+m, y+n)] m,n €Ros(K), k(m,n) 20 (4.2.3.1b)

where each output pixel is computed at location (x, y) for a morphological kernel, K, which has a
local region of support (Ros) that defines its geometric filtering properties with M columns and N
rows. For these primitive morphological operations, MAX and MIN are computed locally for
every pixel. Only nearby pixels are required to compute output pixels, specifically for the pixels
in K that are non-zero.

For this benchmark, the morphological filter is defined as follows. As shown in Figure
4-15, V is the input image and W is the output, where

w=v-[(V K FK] (4.2.3.2)

A detailed discussion on morphology can be found in [Maragos] and [Parker 97]. The
pixel values for input kernel K will be provided with unsigned byte precision and the pixels in the
input image V will be provided with short integer precision as discussed in Section 4.2.3.1. The
pixels in the output image W are required to have a minimum of short integer precision. Pseudo-
code for the morphological filter component follows.

/* morphological filter component */
Get image V, kernel K o
Clear images W, 01 and 02 (set to o)

/* First calculate erosion 01 =V ~ K */) :

Loop for each pixel V(x,y) where (M-1) /2<=x<X-(M-1)/2 and
(N-1) /2<=y<Y- (N-1) /2 o :
initialize minval " _ ’
Loop for each non-zero pixel k{(m,n) '

minval = MIN[minval, V(x+m,y+n)]

End loop
ol(x,y) = minval
End loop

/* Next calculate dilation 02 = O1 Ix */ ' :
Loop for each pixel ol(x,y) where (M-1) /2<=x<X~- (M-1) /2 and
(N-1)/2<=y<Y=(N-1)/2 ,

77

initialize maxval
Loop for each non-zero pixel k(m,n)
maxval = MAX[maxval, ol (x+m,y+n)]

End loop

o2(x,y) = maxval
End loop
/* Last output W =V - 02 */
Loop for each pixel in w(x,y) where M-l<=x<X-M+l and N-1<=y<Y-N+1
Wix,y) = Vix,y) - o2(x,y)
End loop

Note that, after processing, the valid output region will be smaller than the valid input
region, since there is not enough valid input data at the outer edges to calculate valid output. In
particular, for a given kernel with M columns and N rows, the outer frame of invalid data will be
a rows at the top and bottom and b columns at the left and right of the image, where a and b are
defined by

V-1, M- (4.2.3.3)
2 2

This effect accumulates during a process involving sequential steps, so that the final
output will have an outer frame of undefined data equal in size to the sum of all the edge effects
from each step within the process. This undefined outer frame should be set to the value 0 (zero).

For example, if a simple 3x3 kernel is used for the morphological filter (performing an
erosion followed by a dilation), both M and N equal three. In that case, ¢ and b are
(N-1)/2=(M-1)/2 =1 pixel for each erosion or dilation. Therefore, the frame of

undefined data in the output at the end of the filter is the sum 1 +1 = 2 pixels in width.

4.2.3.2.2 ROI Selection

The ROI selection component uses the input image ¥V, and input parameters
thresholdLevel, minArea, maxRatio, and selectNumber, provided in the input file as discussed in
Section 4.2.3.1. The image W from the morphological filter component is the final input
required. This component applies a threshold to image W, using the input thresholdLevel, to
differentiate target pixels from background pixels. Then, target pixels are grouped together to
determine how many isolated ROIs have been found. This is achieved by traversing W and
assigning each detected target pixel to an ROI. Areas that are connected to each other are
considered part of the same ROI. Two areas are declared connected if any target pixel from one
area is 8-adjacent with any target pixel in the other (i.e., if they are horizontal, vertical, or
diagonal neighbors). Next, an initial feature extraction is performed on these ROIs. Finally, a
subset of these ROIs is selected, based on the values of the initial features. This subset of
selected ROIs is used to generate the output of this component: an image O of detected objects or
ROIs, and a list, regions, which includes initial features for each selected ROL

The output O does not need to be an image, but does need to contain enough
information so that each selected ROI is differentiated from other ROIs, and so each pixel within
an ROI can be referenced. For the sake of simplicity and readability, the baseline implementation
of the benchmark generates O in the form of an image. The depth of the values in O is driven by

the maximum number of possible ROIs ((2l6 — 2) as specified below).

78

Other implementations of the benchmark need not constrain O to be an image, as long
as the utility of O remains. For example, instead of a complete image containing all the ROIs,
each labelled with a distinct index, a subimage or chip could be extracted for each ROI where the
chip boundaries could be defined by the smallest rectangular region containing the ROI. Then a
method of obtaining the location of the ROI relative to the filtered image W must also be retained
(i.e., an offset to place the chip over the proper location in #). In this manner, there would be
selectNumber chips and offsets to specify the selected ROIs. As another example, an ROI could
be specified as a list of pixel locations.

The feature extraction process is split up into two stages: 1) an initial set of features is
calculated during the ROI selection component, and 2) an additional set of features is computed
during the feature extraction component. This split is frequently done in deployed systems in
order to minimize computation. Features in the first stage are typically not as computationally
expensive as those in later stages. The features from the first stage are often used, as in this
benchmark, to cull the ROI list before continuing, so that the second stage features are not
computed except where necessary.

Implementations of this component are required to handle at most (216 —2) number of
ROIs (before going through the selection logic). Using 8-adjacent connectivity, the theoretical
maximum number of distinct ROISs is approximately one quarter the number of pixels in the entire
original image. Should there exist more than (216 —2) ROIs in W, the ROIs beyond this number

may be ignored.

Initial features for this component are extracted for each ROI that is found within W.
The features are centroid, area, perimeter, mean, and variance. See [Parker 94] or [Castleman]
for a detailed description of these features. The first three—centroid, area, and perimeter—measure
properties of the ROI defined after the threshold is applied to W. Let T be an image, the same
size as W, defined herein to be the value 1 over the target or ROI in question, and 0 elsewhere.

The centroid is the location that is central to the ROI, represented as T, and is computed
using the following equations:

t(x, *
centroidCol = Z—(iz)—{
area(T)
x,y € Ros(T) (4.2.3.4)
tx, *
centroidRow = M_l
area(T)

where the x and y locations are relative to the pixel coordinates defined for the registered image
W with column and row ranges 0<x<X and 0<y<Y.

The area is a count of the number of target pixels contained in the ROL
The perimeter is a count of the number of pixels on the target that are 8-adjacent to a

background pixel. To find this value, let two pixels be defined as 8-adjacent if they are
horizontal, vertical, or diagonal neighbors.

79

Both the thresholded version of ¥ and the input image V are used to calculate the mean
and variance features. These features are statistical measures computed for the pixel values in
each ROI using the equations:

mean = Z\f(x,y)t(x,y) x,y € Ros(T)
pixelCount
; (4.2.3.5)
v(x, y)i(x,
variance = 21 (WHx7)] - mearn’ x,y €eRos(T)
pixelCount

where the summation for the mean and variance is calculated over a single ROI, and pixelCount
is the number of pixels in that ROI (represented above as 7).

Once the initial features have been calculated, selection logic using these features
creates a subset of selected ROIs that are retained. The three input parameters—mindrea,
maxRatio, and selectNumber—specify the selection criteria. The features calculated in the ROI
selection component-area, mean, and perimeter—are used with these input parameters to
determine whether an ROI will be selected. Any ROI with a feature that does not pass the
selection criteria is removed from the ROI list. Two of the selection tests are defined below.

minArea < area

perimeter (4.2.3.6)

< maxRatio
areq

The final selection test requires ranking the list of ROIs by the value of the product
(mean * area) from largest to smallest value and selecting the top selectNumber of ROISs that also
satisfy the selection tests in Equation 4.2.3.6 above. Thus, the selectNumber ROIs with the
largest product mean*area, that also satisfy the selection tests in Equation 4.2.3.6, compose the
set of selected ROIs.

Then, for the labelled ROIs, an output image, O, and a list, regions, must be
constructed. Image O defines the shapes and locations of the selected ROls, and regions contains
a list of the selected ROIs including the initial features.

The output image, O, is required to have a minimum of short integer precision, to
handle labels for at most (216 —2) ROIs. The list shown as regions in Figure 4-15 must include
the six features described in this section for each ROI identified in image O. The floating-point
features—centroidCol, centroidRow, mean, and variance—are required to have a minimum of float
precision. The other features—area and perimeter-are required to have a minimum of integer
precision. Pseudo-code for a correct-though inefficient-implementation of the ROI selection
component follows.

/* ROI selection component */
/* V is input image */

/* W is morphological filtered image */
/* thresholdLevel is level to use to determine target pixels */

80

/* minArea, maxRatio, and selectNumber are parameters
to be used in ROI selection logic */
Get images V and W : ‘
Get parameters thresholdLevel, minArea, maxRatio, selectNumber
Clear image G (set to 0)
nt = 0 ‘
/* first threshold image W to determine target pixels
and group pixels belonging to the same ROI, by
marking each ROI with a unique id */
Loop for each (x,y) in W /* scan filtered image */
If w(x,y) > thresholdLevel then /* if target pixel */
Loop for (u,v) in 8 neighbors of (x,y) ;
If g(u,v) > 0 then /* if already tagged */
If g(x,y) > 0 and g(x,y) # g(u,v) then
/* we are connecting two ROIs */
gt = g(u,v) .
Loop for each (i,j) in G up to and
including (x,y)
If g(i,j) = gt then
g(i,j) = g(x,y)

Endif
End loop
Else /* first tagged neighbor */
gix,y) = glu,v) '
Endif :
Endif
End loop ;
If g(x,y) =0 /* ROI is-isolated */

If (nt > (2%-2)) then
g(x,y) = 0 /* ignore >(2'-2) ROIs */
Else ‘ .
nt = nt-+ 1 /* increment ROI count */
~ 'g(x,y) = nt /* label ROI with new id */
Endif S e ‘
Endif 4
Endif
End loop

/* Compute initial features for each ROI */
/* F is list of initial features */
Initialize F ’ I
Loop for each ROI in G v
clear centroidCol, centroidRow, area, perimeter,
mean, and variance DU
Loop for each pixel g(x,y) in ROI
centroidCol = centroidCol +'Xx
centroidRow = centroidRow + V-
area = area '+ 1
If pixel is 8-adjacent to background pixel
then perimeter = perimeter +'1
Endif - : :
mean = mean + v(x,y) :
variance = variance+v(x,y)*v(x,y)
End loop o = :
centroidCol = centroidCol / area
centroidRow = centroidRow / area

81

mean = mean / area
variance = (variancelarea) -mean®
add features to list F

End loop

/* use selection logic to select subset of ROIg */
order list F ranking mean*area value from largest to smallest
numROIs = 0
initialize list regions
clear image O
Loop for each ROI on list F
If (minArea <= area) AND
(perimeter/area <= maxRatio) AND
(numROIs < selectNumber) Then
numROIs = numROIs + 1
add ROI to object image O
add initial features to list regions
Endif
End loop for each RCI on list F

4.2.3.2.3 Feature Extraction

In the final component of the sequence, additional features are calculated for the ROIs
selected from the previous component. As shown in Figure 4-15, two input parameters are
provided in the input file for this component. The parameters—distanceShort and distancelLong—
are provided in integer precision as discussed in Section 4.2.3.1. The input image, V, the object
image, O, and the list, regions, complete the inputs required for this component. The input O
does not need to be an image, but does need to contain enough information so that each selected
ROI is differentiated from each other and so each pixel within an ROI can be referenced. In this
implementation, this is achieved by having O be an image. The depth of the values in O is driven

by the maximum number of ROIs possible (216 -2).

The additional features calculated in this component give a measure of the texture of
each ROIL. As discussed in [Parker 97], a grey level co-occurence matrix (GLCM) contains
information about the spatial relationships between pixels within an image. Statistical descriptors
of the co-occurence matrix have been used as a practical method for utilizing these spatial
relationships. Furthermore, [Unser] designed a method of estimating these descriptors without
calculating the GLCM, instead using sum and difference histograms. The features to be
calculated here are GLCM entropy and GLCM energy, and are defined in terms of a sum
histogram, sumHist, and a difference histogram, diffHist. These histograms are dependent on a
specific distance and direction just as the GLCM. The sum histogram, sumHist, is a normalized
histogram of the sums of all pixels at a given distance and direction. Likewise, the difference
histogram, diffHist, is a normalized histogram of the differences of all the pixels at a given
distance and direction. The GLCM descriptors are defined as:

82

GLCMentropy = - ZsumHist(z) *Jog[sumHist(i)]

- . diffHist(j) *log[diffHist()]
- (4.2.3.7)

GLCM energy = ZsumHist(z)z * Z diffHist(j)’
i J

where sumHist(i) is the normalized sum histogram and diffHist(j) is the normalized difference
histogram for the particular distance and direction of interest.

For this benchmark, rather than calculate these measures for all possible distances and
directions, two distances are given in the input file, and four directions of interest must be used.
These directions are defined as: 0°, 45°, 90°, and 135°. Therefore, the feature extraction
component will compute, for each selected ROIL a total of sixteen features (two descriptors at
each of two distances and four directions). Both of the descriptors — GLCM entropy and GLCM
energy — are required to have a minimum of float precision.

The final output of the benchmark is a feature list, features, containing all twenty-two
features (both initial and additional features), for each selected ROI. Pseudo-code for a correct—
though inefficient-implementation of the feature extraction component follows.

/* feature extraction component */

/* V is the input image */
/* O is object image */
/* regions is list which includes initial features */
/* features is list of all features
, (initial and additional features) */
Get images V and O ’ ‘
Get list regions
Initialize features
numROI = O . o o
Loop for each ROI in 0 /* scan object image */ o
numROI = numROI + 1 /* keep track of number of ROIs */
Get initial features for ROI from list regions
Loop for distance = distanceShort and distancelong
/* for 0 degree direction (horizontal) */
dx = distance 1 ‘
dy=0‘ ‘ ~) . R
call cachescriptors(V,O,numROI,dx,dy,energy,entropy)
add all features(distance,0°) to features :
/* for 45 degree direction (right diagonal) */
dx = distance . , B
dy = distance
call cachescriptors(V,O,numROI,dx,dy,energy,entropy)
add all features (distance;45°) to features
/* for 90 degree direction (vertical) */
dx = 0 ‘
dy = distance :
call cachescriptors(V,O,numROI,dx,dy,energy,entropy)
add all features(distance,9o°) to features '

83

/* for 135 degree direction (left dlagonal) */

dx = - distance

dy = distance

call calcbPescriptors(V, 0, numROI,dx, dy,energy,entropy)

add all features(distance,135°) to features
End loop for distances
End ROI loop
End feature extraction

routine calcDescriptors(V, O, numROI, dx, dy, energy, entropy)
numlevels = (number grey-levels in image)

numhistlevels = 2*numlevels

get array sumHist size numhistlevels, initialize to ©

get array diffHist size numhistlevels, initialize to 0

totalnumpixels = 0
Loop for each pixel in ROI numROI
/* calculate sum and difference histograms */
If (x,y) AND (x+dx,y+dy) legal pixel addresses in ROI Then
Increment sumHist([v(x,y) + v(x+dx,y+dy)])
Increment diffHist(numlevels+[v(x,y)-v(x+dx,y+dy)])
Increment totalnumpixels
Endif legal pixel address
End loop for numROI
/* normalize sumHist and diffHist */
Loop for i =0, numhistlevels
sumHist (i) = sumHist(i) / totalnumpixels
diffHist(i) = diffHist(i) / totalnumpixels
End loop for i
energys 0
energyD = 0
entropy = 0
/* calculate descrlptors from sumHist and diffHist */
Loop for i =0, numhistlevels
entropy = entropy - sumHist(i)*log(sumHist (1))
- diffHist(1i)*log(diffHist (i))
energyS = energyS + sumHist(i) * sumHist (i)
energyD = energyD + diffHigt(i) * diffHist(i)
End loop for i
energy = energyS * energyD
End routine calcDescriptors

4.2.3.3 Output

The output for the Image Understanding benchmark should be provided as a char (7-bit
ASCII stored in 8-bit bytes) file where there is one line of ASCII text for each selected ROIL. This
entry should contain all the features calculated for that ROI: six initial features from the ROI
selection component and sixteen additional features from the feature extraction component. The
format for each entry is described in the following table.

84

Table 4.2.3-3: Output Record Specification for Each ROI

‘Field | Description Type Format T
1 centroidCol ﬂoa; m.dddd Etxx
2 centroidRow float m.dddd Etxx
3 area integer dddddd
4 perimeter integer dddddd
5 mean float m.dddd Etxx
6 variance float m.dddd Exxx
7 0° GLCM entropy float m.dddd Etxx
8 GLCM energy float m.dddd Etxx

-9 45° GLCM entropy float m.dddd Etxx
10 ’ DistanceShort GLCM energy float m.dddd Etxx
11 90° GLCM entropy float m.dddd Etxx
12 GLCM energy float m.dddd Etxx
13 135° | GLCM entropy float m.dddd Etxx
14 GLCM energy float m.dddd Etxx
15) 0° GLCM entropy float m.dddd Exxx
T3 GLCM energy | float | m.dddd Etxx
‘17 45° GLCM entropy float m.dddd Etxx
1 8 DistanceLong GLCM energy float m.dddd Etxx

19 90° GLCM entropy float m.dddd Exxx

; 26 . GLCM energy float m.dddd E+xx
2i 135° | GLCM entropy Sfloat m.dddd Etxx
22 - GLCM energy float m.dddd E+xx

85

One space (char value 32) should be used to delimit each field, and a carriage return/line
feed should follow the last field for each ROI.

4.2.3.4 Acceptance Test

The software implementation will be considered successful for a given input data set
when the implementation is executed for the given input data set and produces results that match
with the corresponding output provided with the benchmark. Precision is discussed in Section
3.7.

4.2.3.5 Metrics

The primary metric associated with the Image Understanding benchmark is the total time
required to run a given input data set through the Image Understanding sequence generating
accurate results. A series of secondary metrics for the individual times of the processing
components is also required. The time associated with a processing component is defined as the
time at the beginning of one part in the flow to the beginning of the next part in the flow. For
example, the time to perform the Morphological Filter component is the time it takes to apply the
morphological filter to the input image ¥ and obtain the output image W, not including time to
read input image, ¥, and kernel, X.

4.2.3.6 Baseline Source Code

Baseline source code is available at http://www.aaec.com/projectweb/dis.

4.2.3.7 Baseline Performance Figures

Baseline performance figures are available at http://www.aaec.com/projectweb/dis.

4.2.3.8 Test Data Sets

Test data sets are available at http://www.aaec.com/projectweb/dis.

4.2.3.9 References
[Castleman] Castleman, K., Digital Image Processing, Prentice-Hall, 1979.

[Maragos] Maragos, P., “Tutorial on advances in morphological image processing and
analysis,” Optical Engineering, vol. 26, no. 7, pp. 623-632, July 1987.

[Parker 94] Parker, J., Practical Computer Vision Using C, Wiley, 1994,

[Parker 97] Parker, J., Algorithms For Image Processing And Computer Vision, Wiley
Computer Publishing, 1997.

{Unser] Unser, M., “Sum and Difference Histograms for Texture Classification,” JEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-8,
1:118-125, 1986.

[Weeks] Weeks, A., Fundamentals of Electronic Image Processing, SPIE/IEEE series on
imaging science & engineering, 1996.

86

4.2.4 Multidimensional Fourier Transform

The Fourier Transform has wide application in a diverse set of technical fields. It is
utilized in image processing, convolution and deconvolution, and digital signal filtering to name a
few. This benchmark attempts to measure the performance of a typical range of transforms using
the candidate hardware configurations.

The DIS Fourier Transform Benchmark consists of applying a three-dimensional Discrete
Fourier Transform (DFT) to a series of transform tests, all of which have the same number of
dimensions, but may have different sizes and are repeated a specified number of times. The
three-dimensional DFT is defined by

zZ Y X }))
F(x,,7) = Z Z Ze2mk3zIZeankz)’/Ye2mklxIXf(kl’ kz’ k3) @241)

k, =0k, =0k, =0

where f is the input complex three-dimensional array of size XxYxZ,and F is the output
forward transform of f of the same size. An individual transform test consists of a specification
of the size of the input array and the number of times the input array is transformed into the
output array. Note that this benchmark does not specify any recursive application of the DFT (for
example, applying the transform, calculating the inverse, and applying the transform to the
result). Thus, the input array, f, should not be overwritten during the calculation of the

transform output, F.

The size of the three-dimensional data array to be transformed is specified by an input file
(ie., the values of X, ¥, and Z), but the initial values for the array data, f, are not provided.
The DFT computes the transform of a three-dimensional array of complex floats, but the
computational speed or efficiency of the DFT is not data dependent. Because of this separation
between data and performance, and to reduce the size of the input set, only the lengths of the
three dimensions are specified. The values for the array should be randomly initialized once for
each transform test. The characteristics of the random input initialization is left to the individual
implementers with the conditions that the random number generator have a period larger than 2%
and the values generated lie within the bounds detailed for floats in Section 3.6 (Common Data
Types). Note that almost all implementations of the standard UNIX rand() function satisfy these
conditions.

4.2.4.1 Input

An input set for the Fourier Transform Benchmark is provided in a single ASCII text file
as a list of transform tests. All values within the input file are integers and are white-space-
delimited (here “white space” indicates carriage returns, line feeds, or spaces). The first value in
the input file is an integer, which specifies the number of transform tests detailed in the file. The
rest of the file consists of a series of four integers where each set of four specifies a transform
test. The first three integers of a set are the lengths of the first, second, and third dimensions of
the transform, respectively. The fourth integer of a set is the number of times to repeat this
particular test. Table 4.2.4-1 shows a schematic of an input file where M is the number of
transform tests detailed in the file and X, Y, and Z are the lengths of the first, second, and third
dimensions, respectively.

87

Table 4.2.4-1: Fourier Transform Input Schematic

Value

Description

mteger

number of transform tests, M

integer

length of 1st dimension, X

integer

length of 2nd dimension, Y transform test 1

integer

length of 3rd dimension, Z

integer

number of iterations

integer

length of 1st dimension, X

integer

length of 2nd dimension, Y transform test 2

integer

length of 3rd dimension, Z

integer

number of iterations

integer

length of 1st dimension, X

mteger

length of 2nd dimension, Y transform test M

integer

length of 3rd dimension, Z

integer

number of iterations

An example of an input file is given in the table below. This example file specifies five
- separate transform tests: a 200x100x1 transform repeated 10,000 times, a 5000x100x1 transform
repeated 5000 times, a 20,000x800x1 transform repeated 100 times, a 5000x200x2 transform

repeated 250 times, and a 4000x1000x1 transform repeated 500 times.

Table 4.2.4-2: Fourier Transform Input Example
5 # number of transform tests, M
200 100 1 10000 # parameters for transform test 1
5000 100 1 5000 # parameters for transform test 2
20000 800 1 100 # parameters for transform test 3
5000 200 2 250 # parameters for transform test 4
4000 1000 1 500 # parameters for transform test 5
88

4.2.4.2 Algorithmic Specification

The discussion of the algorithmic specification for the DFT in this benchmark will be
limited, as the amount of material freely available to the implementers is extremely large. Rather,
a brief description of several FFT algorithms, with appropriate references, will be given. The
focus of the discussion is on the FFT methods since almost all transform implementations are
FFT rather than a direct implementation of the DFT Equation 4.2.4.1. However, any
implementation which yields valid results is acceptable. The algorithm descriptions provided
here are not meant as a complete listing of all available or allowable methods; implementers are
encouraged to use any methods that will demonstrate the advantages of their hardware
configurations. Also, a brief discussion of implementing algorithms which require dimensions of
a power of two using “zero padding” is given.

The majority of FFT methods transform the original DFT into a series of subproblems
which achieves a lower computational complexity[Duhamel90]. The most common subproblem
decomposition is to assume that the dimensions of the input array are powers of two. This allows
the summations present in Equation 4.2.4.1 to be split into two subproblems [Cooley]. The even-
and odd-numbered frequencies are separated and the problem is recursively split by two until the
original transform of length N = X xY x Z is reduced to transforms of length one, which is
simply the identity operation that copies its input number to its output slot. The total process is
on the order of Nlog, N and requires a bit reversal either on the input or the output depending
upon the specific algorithm. Methods that do the bit-reversal then build up the transform are
generally called decimation-in-time (DIT) or Cooley-Tukey FFT methods. Methods that
manipulate the input data and then do bit-reversal on the output values are generally called
decimation-in-frequency (DIF) or Sande-Tukey FFT methods. '

The same type of reasoning can be applied, but the recursive subdivision stopped, at
higher powers of two (typically four and eight with this type of algorithm called radix-4 or radix-
8 methods[Ganapa]). These small transforms are done using highly optimized code, which
provides a modest but appreciable performance improvement. A combination of subproblems of
lengths two, four, or eight are also possible, and are generally called split-radix
“methods[Duhamel84].

The division of the DFT into subproblems is not limited to powers of two, but can be
applied using prime numbers[Rader] and combinations of powers of two and primes with
relatively sophisticated decision trees to determine the “optimal” subproblem divisions for a
given problem [Frigo], [Frigo99].

The subproblem division of Equation 4.2.4.1 into powers of two requires that most of the
computations, especially complex muitiplications, be done in the initial stages of the algorithms
for the Sande-Tukey FFT methods. However, the Cooley-Tukey methods place most of the
complex computation at the final stages of the algorithms. A combination of the DIT and DIF
methods with a transition stage between the domains would then lead to computation savings
which is the idea behind Decimation-In-Time-Frequency methods [Saidi].

Several FFT algorithms require that the input array have dimensions that are a power of
two. One method for using these algorithms when the array dimensions are not powers of two is

to use a technique called “zero padding”. This technique simply increases the memory size of the
original array to the next power of two and initializes the extra space to zero. The numerical

89

accuracy of the DFT algorithm is essentially unaffected by these “extra” zeros, and the result
should be identical to other DFT methods. The primary trade-off is in terms of excess storage
required for the technique that can become critical for large input arrays.

4.2.4.3 Output

The output of this benchmark consists of an ASCII text file indicating the “mean
fractional error” of the individual transform tests. All values placed in the output file are white-
space-delimited (see Section 3.6 for the definition of “white space”). The first value in the file is
an integer that specifies the number of transform tests performed and should match the
corresponding value from the input file. The float values for the “mean fractional error”, €, ., for

each test are then listed in the order they were performed. Table 4.2.4-3 shows a schematic of an
output file.

Table 4.2.4-3: Fourier Transform Qutput Schematic

Value : . . Description

integer number of transform tests, M
float mean fractional error of test 1
float mean fractional error of test 2
float mean fractional error of test M

The “mean fractional error”, €, is defined to be

1 2 xz }xyz
€mpe = XYZZ,:Zy:Zx: I.fxyz +|,;_;_yz e 4.24.2)

where fis the original input to the transform, f is the inverse of the transform of f, i.e.,

7 1 LG —nik,zfZ 27 —2nik,x
f=F’(f)=—X-};§ZZZe Thal? g ikl o Y Pk, Ky, K,) (42.4.3)

ky =0k, =0k, =0

which differs from Equation 4.2.4.1 by simply changing the sign within the exponents and
dividing the result with the total size of the transform. The variable £ within Equation 4.2.4.2 is
a small value used to prevent division by zero. The value €,, is then a measure of the

perturbation of the transformed data from the original. Note that it is not necessary to implement
an inverse DFT to calculate /. The array f can be calculated from the identity,

90

f=F'()=F (f) (4.2.4.4)

where * indicates complex conjugation.
4.2.4.4 Acceptance Test

A given input set will be considered successfully executed when each transform test
successfully passes the output provided with the benchmark. An individual transform test is
considered successfully executed when the value for €, is less than or equal to the value. An

input set is considered successfully executed when all of the individual transform tests pass this
same level of required accuracy.

4.2.4.5 Metrics

There are three metrics for this benchmark. The first, and primary, is the total time
required to complete the input set. This should include the time for each transform test as well as
the I/O time required to load the randomly generated input and output the result. The total time
should not include the time necessary for the generation of the random data. The second metric is
the time required to complete the individual transform tests. Again, this time should include any
/O time for loading of data and output of results. The third metric measures the “mflops”
[Johnson] of the individual transform tests. The “mflops” for a given transform is defined to be

5(X x ¥ x Z)log, (X x Y x Z)
(time for one DFT in us)

"mflops" = (4.2.4.5)

where X, Y, and Z are the lengths of the first, second, and third dimensions, respectively. The
rational behind using this metric is to provide a reasonable comparison between different
architectures, implementations, and transform sizes. Note that the “mflops” is not the MFLOPS
(millions of floating-point operations per second), but an estimate of that value which assumes a
common baseline number of operations for any implementation as

5(Xx ¥ x Z)log, (X x ¥ x Z) +3(N)
(4.2.4.6)

which is the radix-2 Cooley-Tukey FFT[Cooley]. This third metric is common in the FFT
literature and for more discussion of the reasoning behind the metric, the reader is referred to
[Johnson].

4.2.4.6 Baseline Source Code

Baseline source code is available at http://www.aaec.com/proiectweb/dis.

4.2.4.7 Baseline Performance Figures

Baseline performance figures are available at http://www.aaec.com/projectweb/dis.

4.2.4.8 Test Data Sets

Test data sets are available at http://www.aaec.com/proiectweb/dis.

91

4.2.4.9 References

[Duhamel90] Duhamel and Vetterli, “Fast Fourier transforms: a Tutorial Review and State of
the Art,” Signal Processing, vol. 19, pp.259-299, April 1990.

[Cooley] Cooley and Tukey, “An Algorithm for Machine Computation of Complex
Fourier Series,,” Math. Comp., vol. 19, pp.297-301, April 1965.

[Ganapa] Ganapathiraju, Hamaker, Picone and Skjellum, "Analysis and Characterization of
Fast Fourier Transform Algorithms," MS State High Performance Computing
Laboratory, Oct. 1997.

[Duhamel84] Duhamel and Hoolomann, “Split Radix FFT Algorithm,” Electronic Letters, vol.
20, pp.14-16, Jan 1984.

[Rader] Rader, “Discrete Fourier Transforms when the Number of Data Samples is
Prime,” Proc. of the IEEE, vol. 56, pp.1107-1108, June 1968.

[Frigo] Frigo and Johnson, The FFTW web page, http://theory.lcs.mit.edu/~fftw

[Frigo99] Frigo, “A Fast Fourier Transform Compiler,” MIT Laboratory for Computer
Science, Feb. 16, 1999.

[Saidi] Saidi, “Decimation-In-Time-Frequency FFT Algorithm,” Proc. of International
Conference on Acoustics, Speech, and Signal Processing, vol. 1Il, pp.453-456,
Adelaide, Australia, April 1994.

[Johnson] Frigo and Johnson, The BenchFFT web page, http://theory.lcs.mit.edu/~benchfft

4.2.5 Data Management

The Data Management Benchmark measures application-level timing performance of
typical DBMS. This benchmark focuses on index management and ad hoc or content-based
queries since these two areas are the primary weaknesses of traditional DBMS.

The benchmark is implemented as a simplified object-oriented database with an R-Tree
indexing scheme. The R-Tree index is a height-balanced containment structure that uses
multidimensional hyper-cubes as keys. The intermediate nodes are built up by grouping all of the
hyper-cubes at the lower level. The grouping hyper-cube of the intermediate node completely
encloses all of the lower hyper-cubes, which may be points. The system must respond to a set of
command operations: Insert, Delete, and Query, queries being either key-based or content-based.
The commands are to be issued to the system in a batch form as a data set.

The Insert command operation places a new data object into the database with the
specified attribute values. Each Insert command contains all the information contained by the
data object, including the hyper-cube key and list of non-key attribute values.

The Query command operation searches the database and returns all data objects that are
consistent with a list of input data attribute values. The input attribute values can specify attribute
values which are key, non-key, or both. A data object is consistent with the Query when the input
values intersect the stored values of the data object.

92

The Delete command operation removes all objects from the database that are consistent
with a list of input data attribute values. The types and conditions of the input attribute list, as
well as the description for consistency, are the same as for the Query operation.

4.2.5.1 Input

The input for each test of this benchmark consists of one data set. All of the data sets
share a common format. Fach set is a 8-bit ASCII character file and consists of a series of
sequentially issued commands delimited by a carriage return, i.e., each line of the file represents a
separate command. Table 4.2.5-1 gives the command operations, the character code used to
designate the command, the data placed after the command code on the rest of the line, the return
expected from the application, and a brief description of the operation.

Table 4.2.5-1: Command Operations

Command | Code Line Elements “Return Description
Initialization 0 Fan Size NULL Initializes the index by
specifying the fan of
the tree.
Insert 1 Object Type NULL Insert new entry into
database. See below for
Key Attribute discussion of the
Object Type and key
Key Attribute and non-key attributes.
Key Attribute
Non-Key Attribute
Non-Key Attribute
Non-Key Attribute
Query 2 Attribute Code Data Object List Return all data objects
that are consistent with
Attribute Value the input attributes
specified. Note that
Attribute Code attribute codes and
values always appear
Attribute Value as pairs.
Attribute Code

93

Attribute Value
Delete 3 Attribute Code NULL Delete all data objects
that are consistent with
Attribute Value the input attributes
specified. Note that
Attribute Code attribute codes and
values always appear
Attribute Value as pairs_
Attribute Code
Attribute Value

Each data object has a set of attributes, where the first eight attributes are used by the R-
Tree index as the key and represent two points that specify a hyper-cube. Each point consists of
four 32-bit IEEE-formatted floating-point numbers denoting a four-dimensional point in
Euclidean space as the T-position, X-position, Y-position, and Z-position. Thus, the index key,
which consists of a “lower” and “upper” point, is eight 32-bit floating-point numbers. Note that a
point in hyper-space can be thought of as time (T) and a three-dimensional point (X,Y,Z), but this
1s immaterial to this benchmark.

The total number of attributes assigned to a data object is the sum of the key and non-key
attributes. The number of non-key attributes for a given data object is determined by the Object
Type, and is given in the table below. The Object Type used by the Insert command specifies
which of the three types of objects (Small, Medium, and Large) is being inserted by the operation.
Table 4.2.5-2 gives the character/byte code and the number of non-key attributes for each data
object type

Table 4.2.5-2: Data Object Types

Object Type ‘ - Code * - No. of Non-Key Attributes
Small | —T 0
Medium 2 17
Large 3 43

Data objects differ by the number of non-key attributes assigned to each. Each non-key
data attribute has an identical format that primarily consists of an 8-bit NULL-terminated ASCII
character sequence of maximum length 1024. Table 4.2.5-2 gives the number of non-key
attributes assigned to each object type. The maximum sizes for the Small (overhead + 10 *
1024), Medium (overhead + 17 * 1024), and Large (overhead + 43 * 1024) data objects are
known beforehand, but the total size of the database is not determined until the input is set. The

94

database should be able to handle all three types of data object, in any permutation. Note that the
object type specification is placed at the beginning of the Insert command as a convenience, since
the number of attributes can be determined by reading until the next carriage return, i.e., the end
of the command.

The Delete and Query commands each reference a specified attribute by means of an
Attribute Code. The following table gives the attribute code sequence for both the key and non-
key attributes. Also, each attribute is assigned a type and, if applicable, a name and units.

Table 4.2.5-3: Attribute Codes and Descriptions

- Attribute Name - Type
Code
04 T‘ float
Lower 1 X float
Point 2 Y float
Key 3 Z float
Attributes 4 T float
Upper 5 X float
Point 6 Y float
7 Z float
8 property char string
9 property char string
Small
16 property char string
17 property char string
18 property char string
Non-Key 19 property char string
Attributes Medium
23 property char string
24 property char string

95

25 property char string

26 property char string
Large

49 property char string

50 property char string

Only the Query commands result in a response from the database. The response is the set
of data objects that are appropriate for the corresponding Query. A description of the response is
given in the Output section of this benchmark specification.

The formal definition of each command input line is described in the following sections.
Each command line represents separate pieces of data, which are ASCII space-delimited unless
otherwise stated. References to integers and floats indicate 32-bit IEEE standards. The first
piece of data for every command line is the command code, which indicates the specific
operation. The rest of the line is relative to the command type and is described in detail below.

4.2.5.1.1 Initialization

The Initialization command appears only once per data set and is always the first
command. Only two pieces of information is provided for the command where the first is the
command type, which in this case is ‘0’. The second piece of data is the fan size, which is an
integer. A diagram of the /nitialization command line is given below:

int int

code | fan size

4.2.5.1.2 Insert

The Insert command is different from the Delete and Query commands, in that the
Insert command does not reference data attributes by the appropriate attribute code given in Table
4.2.5-3. The Insert command does not need to specify the attribute code, since all attributes are
provided in the command line and are in the proper order. Thus, the Insert command input line
does not use the attribute codes in order to reduce the size of the input data sets and to simplify
the command line input.

The first piece of data in the command line is the command type, which is 1’ for the
Insert operation. The next piece of data represents the object type, and can be the character 1, 2,
or 3, for Small, Medium, or Large, respectively. The next eight pieces of data make up the index
key for the object as the floating-point values for T, X, Y, and Z, for the “lower” and “upper”
hyper-points, respectively. The remaining data are the individual non-key attribute character
sequences of the new object. Each attribute is space-delimited, and is of variable length. The
number of attributes on the line is dependent upon the object type being read, and is given in
Table 4.2.5-2. The maximum size for any attribute on the command line is 1024, although in
practice the attributes will be smaller. A diagram of the Insert command line is given below:

96

float float float float| float float float float| char char -+ char
key attributes non- key attributes

int

type

int

code

4.2.5.1.3 Query

The Query command returns all data objects within the current database that are
consistent with the provided key and non-key attribute values. A data object is consistent when
the object’s attribute values “intersect” with the Query attribute values. The definition of
intersection is different for the key and non-key attributes. The attributes that make up the index
key are hyper-cubes and the definition for an intersection is an intersection of the respective
hyper-cubes, i.e., an intersection occurs whenever the input hyper-cube and the stored hyper-cube
share any of the hyper-space. The non-key attributes consist of character sequences and the
definition of an intersection is when any part of the stored character sequence matches the entire
input sequence.

The first piece of data is the command code, which is 2’ for Query. The rest of the
command line is a list of attribute code and value pairs. A diagram of the Query command line is
given below:

int float | char

attribute code attribute value

int int float / char

e

code | attribute code attribute value

The number of attribute code-value pairs ranges from 1 to 50, where an attribute code
is never repeated in a single command line. The attribute value type depends upon the attribute
code where an attribute code between zero and seven indicates a float and an attribute code
between eight and 50 indicates a character sequence. It is possible that a Query will specify an
attribute code that is not applicable to a specific data object. For example, any attribute code
greater than 17 for a Small object, or any attribute code greater than 24 for a Medium object. The
query search values for these cases should be ignored, and should not prevent the candidate data
object from inclusion in the Query solution.

A key query, a search which uses the R-Tree index to search the database, requires a
full index key, i.e., all eight floating point values specifying the search hyper-cube. The Query
command input line need not contain all eight values for the search. If so, the search hyper-cube
uses “wild-card” values for the rest of the search hyper-cube that match all possible stored values.
An example of an incomplete key Query is

2 3 0.0 7 10.0

which searches the current database for all data objects which were between the Z-positions of
0.0 and 10.0 for any values for the T-, X-, and Y-positions. Similarly, ad hoc queries also use
wild-card values for missing values of the search hyper-cube.

4.2.5.1.4 Delete

The Delete command removes all data objects in the database that are consistent with
the provided attributes. A data object is consistent when the object’s attribute values “intersect”
with the Query attribute values. The definition of intersection is different for the key and non-key
attributes. The attributes that make up the index key are hyper-cubes and the definition for an

97

intersection is an intersection of the respective hyper-cubes, i.e., an intersection occurs whenever
the input hyper-cube and the stored hyper-cube share any of the hyper-space. The non-key
attributes consist of character sequences and the definition of an intersection is when any part of
the stored character sequence matches with the input sequence. This description of consistency is
identical to the one given for the Query command in the previous section.

The first piece of data is the command code, which is ‘3’ for the Delete operation. The
rest of the command line is a list of attribute code and value pairs and is identical to the Query
command given in the previous section. A diagram of the Delete command line is given below.

int int float / char int float / char

attribute code attribute value

code | attribute code attribute value

The description of the attribute code-value pairs and the use of wild-card values is
identical to the Query command given in the previous section.

4.2.5.2 Algorithmic Specification

The database consists of various combinations of the three types of data objects. The
algorithm requires the maintenance of an R-Tree index structure. The program shall respond to
the command operations: Insert, Query, and Delete. This section has three parts: the data object
description, R-Tree index structure and description, and R-Tree variant discussion.

4.2.5.2.1 Data Object Description

Each entry in the database will be one of three types as discussed in section 4.2.5.1. A
data object has a set list of attributes, which are the sum of the key and non-key attributes. The
first eight attributes represent the index key and is specified as eight 32-bit IEEE floating-point
numbers representing the T, X, Y, and Z-positions of both the “lower” and “upper” points of a
hyper-cube, respectively. Finally, each object has a constant number of attributes or parts. A
non-key data object attribute is an 8-bit NULL-terminated ASCII character sequence of
maximum length 1024. The number of attributes assigned to each data object type is given in

. Table 4.2.5-2. The attributes for a given data object reference each other as a single-linked list
and the data object holds a reference to the first attribute in the list which is defined as the head.
Separate indices that would use the non-key attributes are not permitted for this benchmark.
Thus, a Query operation which contains no key search information will search the entire database
for consistent entries.

4.2.5.2.2 R-Tree

This benchmark requires the implementation of a simplified object-oriented database
and an attendant R-Tree indexing structure. A general R-tree has the following properties:

1. All leaves are at the same level (height-balanced).

2. Every node contains between kM and M index entries unless it is the root. (M is the order of
the tree).

3. For each entry in an intermediate node, the sub-tree rooted at the node contains a hyper-cube
if and only if the hyper-cube is “covered” by the node, i.e., containment.

98

4. The root has at least two children, unless it is a leaf.

This benchmark requires the R-Tree structure be maintained during execution of the
database implementation. However, the particular method used to maintain the R-Tree (search,
tree compacting, etc.) is left to the user.

This section gives a brief description of the R-Tree algorithm and two variants. One
variant allows for concurrency assurance without a full index list update (R-Link tree); the other
seeks to minimize the overlap of the R-Tree with the offset of increasing the tree’s height (R+-
Tree). The user is encouraged to implement the standard R-Tree, variant described here, or other
variant, as is most suitable for the hardware being tested. Descriptions given here are for
illustrative purposes; they are not intended to dictate implementation strategy.

The R-Tree index provides a multi-dimensional data indexing scheme. It is a direct
extension of the B-Tree in k dimensions (where k = 4 for this benchmark). The structure is a
height-balanced containment tree, which consists of intermediate and leaf nodes. The data
objects are stored as leaf-nodes (requiring four-dimensional position information). The
intermediate nodes are built up by grouping all of the hyper-cubes at the lower level. The
grouping hyper-cube of the intermediate node completely encloses all of the lower hyper-cubes
and/or points. An example is the placement of rectangles in a Cartesian plane given in Figure
4-17.

Figure 4-17: R-Tree 2D Example

This layout of rectangles would produce an index given in Figure 4-18.

99

Figure 4-18: R-Tree Structure Example

The first command operation to be detailed is Insert . The Insert is the method used to
place new data objects into the index and is the primary index management method, and thus the
most complex. The command operation Insert for a generic R-Tree is given in Figure 4-19.

Method Insert(R, E)
Input: An R-Tree rooted at R and new data object with input hyper-cube E
Output: The new R-Tree after insertion of data object.

Method: Find where object should go and add to leaf nodes, splitting if
necessary.

1. Find leaf for insertion. IfR is not a leaf, recursively descend R and find L
which is defined as the leaf node of R which gives the minimum penalty. The
penalty of “change in area” proposed by Guttman is defined as the difference
between the union of the hyper-cubes L and E and the area of L. The union of
two hyper-cubes is itself a hyper-cube which minimally spans its components.

2. Imsert. If L is not full, install E on L. Otherwise split L. Splitting L consists of
separating L into two groups according to a similar “change in area” penalty.
One group is placed on the new node, and the other is Inserted into the parent,
splitting again if necessary.

3. Adjust Keys. Check the immediate parent of new node. If the key is already
accurate or if there is no parent, stop. Otherwise, modify the parent to be the union
of its children. Recursively ascend tree until root, R.

Figure 4-19: Insert

The “change in area” penalty is only one of several methods in choosing the leaf for
insertion and for splitting. The user is referred to [Guttman], [Kornacker], and [Sellis], for a
sampling of the different methods.

The second command operation detailed is the Query command, which is described in
Figure 4-20. The Query command recursively descends all paths of the R-Tree which are
consistent with the input search key returning all data objects which are consistent with the same
search key.

100

Method Query (R, K, A)
Input: An R-Treerooted at R, search key K, and non-key search values A
Output: The set of objects which are consistent with search key K.
Method: Recursively descend all paths of R which are consistent with K.

1. Search. Check each subtree of R to see if K is consistent. If so, search on subtree
until leaf

2. Check Key Attributes. If current node is a leaf, check if K is consistent with
data object. If so, add data object to solution set

3. Check Non-Key Attributes. Remove all entries in current solution set which
are not consistent with non-key attributes of input values A.

4. Return. Return complete solution set

Figure 4-20: Query

The Query command detailed in Figure 4-20 is for key, non-key, and ad hoc queries.
Note that a non-key query will check the entire database for all consistent objects. The method
given in Figure 4.6 will work for a non-key query but will yield poor performance. Because of
the default “wild-cards” for the non-specified search hyper-cube, the second step of the method
will return the entire database as a list, which will then be searched by the third step. The
creation of that list using the R-Tree index is not efficient and the benchmark implementors are
encouraged to have auxiliary lists or parallel searches to improve the performance for non-key
queries.

The final command operation detailed is the Delete operation, described in Figure 4-21.
The purpose of the Delete command is to measure the performance of index management when
entries are removed. The Delete command presented here uses the Query operation to determine
the data objects that need to be removed, and so, the Delete performance is also a measure of the
Query performance.

101

Method Delete (R, K, A)
Input: An R-Tree rooted at R, search key K, and non-key search values A
Output: The new R-Tree after deletion of all consistent data objects.
Method : Remove all data objects consistent with both K and A.
1. Search . Query index for all entries, L, consistent with K and A.
2. Delete . Remove all entries in L from R
2.1.Remove: Remove entry in L from parent leaf, P.

2.2.Condense . Recursively ascend tree, from P, adjusting the keys to minimize
the penalty until the root, R.

3. Clean-up: If the root node has only one child, make child the new root.

Figure 4-21: Delete
4.2.5.2.3 R-Tree Variants

The user is constrained to implement the R-Tree structure as the indexing scheme for
this benchmark application. However, the user is encouraged to select any implementation or
variant of the R-Tree algorithm. Two variants, which may improve performance for a specific
hardware architecture, are the R-link tree and the R+-Tree; these are discussed here.

The R-link tree variant uses a technique corresponding to the B-link tree to develop a
scheme that does not require parent node locking for concurrent operations on the tree. Two
differences from the base R-Tree are introduced for R-link trees. The first requires that all nodes
within a level are right-linked together for a singly linked list. The second difference adds a
logical sequence number (LSN) to each node which is unique within the tree/partition. The R-
link algorithm uses the LSN to provide a mechanism for determining when an operation’s
understanding of a given node is obsolete, i.e., a node split has occurred. If a split has occurred,
the right-link is used to traverse the tree until a correct or expected LSN is found.

The R+-Tree eliminates overlap by reducing any overlapping hyper-cubes into sub-
cubes and redistributing the tree. This provides a marked increase in search performance. The
increase is offset by a more complicated index maintenance and by an increase of approximately
10% for the space required for the index.

4.2.5.3 Output
The output of the database will be the responses to each Query operation.

The response to a Query operation consists of a set of data objects that are consistent with
the Query. Each data object in a response is represented as the list of its attributes in order
defined by Table 4.2.5-3. The list of attributes shall be written to an 8-bit ASCII character file
where each attribute is space delimited and with each list carriage return delimited. The format is
very similar to the Insert operation format for the input data sets with the only difference being
the omission of the command code. The set of data objects returned by a Query must be placed in
the output file continuously, i.e., in adjacent lines, although the order of the set is not constrained.

102

4.2.5.4 Acceptance Test

A given data set will be considered successfully executed when the command operation
query responses match with the corresponding data set query responses provided by the baseline
results.

4.2.5.5 Metrics

The primary metric associated with the Data Management benchmark is total time for
accurate completion of a given input data set. A series of secondary metrics are the individual
times of the command operations: Insert, Delete, and Query. Best, worst, and average times
should be reported for all operations for each data set.

The time for a non-response command operation to complete is defined as the difference
between the time immediately before the command is placed in the database input queue and the
time immediately before the next command is placed in the same input queue. This time
difference is essentially the rate at which each line of the input data set is read. This definition is
applied to the Insert and Delete command operations. The time for a Query command operation
to complete is defined as the difference between the time immediately before the command is
placed in the input queue to the time immediately after the response is placed in the output queue.

4.2.5.6 Baseline Source Code

Baseline source code is available at http://www.aaec.com/projectweb/dis.

4.2.5.7 Baseline Performance Figures

Baseline performance figures are available at http://www.aaec.com/projectweb/dis.

4.2.5.8 Test Data Sets

Test data sets are available at http://www.aaec.com/projectweb/dis.

4.2.5.9 References

[Guttman] Guttman, “R-Trees: A Dynamic Index Structure for Spatial Searching,” Proc.
ACM SIGMOID, pp. 47-57, June 1984.

[Kornacker] Kornacker, Banks, “High-Concurrency Locking in R-Trees,” Proceedings of 21st
International Conference on Very Large Data Bases, pp. 134-145, September
1995.

[Sellis] Sellis , Roussopoulos, and Faloutsos, “The R+-Tree: A Dynamic Index for Multi-

Dimensional Objects,” Proc. 13th International Conference on Very Large Data
Bases, pp. 507-518, Brighton, September 1987.

103

5. CONTACT INFORMATION

For questions about... Contact...

Dr. José Munoz

DARPA /ITO

3701 North Fairfax Drive
Arlington, VA 22203

Data-Intensive Systems program

This Document Joseph F. Musmanno

Benchmarks Atlantic Aerospace Electronics Corporation
Procedures 470 Totten Pond Road

Waltham, MA 02451
Input/Output Data Telephone: 781-890-4200x3218

Fax: 781-890-0224

Baseline Performance i
Email: joe@aaec.com

Reporting of Results

Multidimensional Fourier Transform
Benchmark

Image Understanding Benchmark
Data Management Benchmark

Method of Moments Benchmark Joseph W. Manke, Ph.D.

The Boeing Company

PO Box 3707 MC 7L-21

Seattle, WA 98124-2207

Telephone: 425-865-3163

Fax: 425-865-2966

Email: joseph.w.manke@boeing.com

Ray-Tracing Benchmark Jon W. Harris

ERIM International, Inc.

PO Box 134008

Ann Arbor, MI 48113-4008
Telephone: 734-994-1200x3313
Fax: 313-994-5124

Email: jharris@erim-int.com

6. REFERENCES

DIS Program

[DARPA] DARPA/ITO website http://www.darpa.mil/ito.

[Mutioz] Dr. José Muiioz, presentation at Data-Intensive Systems Principal Investigators’
meeting, 1 October, 1998,
http://www.darpa.mil/ito/research/pdf files/dis_approved.pdf.

104

Benchmarking

[Honeywell]

[Weems]

[ASCIT]

[Float]

Honeywell, Inc., Benchmarking Tools and Assessment Environment for
Configurable Computing: Benchmark Definition Methodology Document,
submitted to USA Intelligence Center and Fort Huachuca under contract number
DABT63-96-C-0085, 19 February 1998.

Weems, Riseman, and Hanson, The DARPA Image Understanding Benchmark
for Parallel Computers, Journal of Parallel and Distributed Computing, 11, 24
January 1991.

Information Systems - Coded Character Sets - 7-bit American National Standard
Code for Information Interchange, Il (NCITS), ANSI x3.4-1986 (R1997).

IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985
(IEEE 754), published by the Institute of Electrical and Electronics Engineers,
Inc, 345 East 47th Street, New York, NY 10017, 1986.

Method of Moments

[Rokhlin-1]

[Rokhlin-2]
[Dembart-1]
' [Dembart-2]

[Dembart-3]

[Dembart-4]

[Saad]

V. Rokhlin, “Diagonal Forms of Translation Operators for the Helmholtz
Equation in Three Dimensions”, Research Report YALEU/DCS/RR-894,
Dept. of Comp. Sci., Yale Univ., March, 1992.

R. Coifman, V. Rokhlin and S. Wandzura, “The Fast Multipole Method for the
Wave Equation: A Pedestrian Prescription”, IEEE Antennas and Propagation
Magazine, 35, No. 3, June 1993, pp. 7-12.

B. Dembart and E. L. Yip, “A 3-d Fast Multipole Method for Electromagnetics
with Multiple Levels”, ISSTECH-97-004, The Boeing Company, December,
1994.

M. A. Epton. and B. Dembart, “Multipole Translation Theory for the 3-D
Laplace and Helmholtz Equations”, SIAM J. Sci. Comput. 16, No. 4, pp. 865-
897, July, 1995.

M. A. Epton and B. Dembart, “Low Frequency Multipole Translation Theory for
the Helmholtz Equation”, SSGTECH-98-013, The Boeing Company, August,
1998.

M. A. Epton and B. Dembart, “Spherical Harmonic Analysis and
Syntheses for the Fast Multipole Method”, SSGTECH-98-014, The

Boeing Company, August, 1998.

Yousef Saad, “Iterative Methods for Sparse Linear Systems”, PWS
Publishing Company, Boston, MA, 1996.

105

Simulated SAR Ray Tracing

Ray Tracing References

(1]

[2]

(3]

[4]

[5]

(6]

[7]

(9]

[10]

[11]

[12]

[13]

K. Bouatouch and T. Priol. Parallel Space Tracing: An Experience on an IPSC
Hypercube. In N. Magnenat-Thalmann and D. Thalmann, editors, New Trends in
Computer Graphics (Proceedings of CG International '88), pages 170-187, New
York, 1988. Springer-Verlag.

J. G. Cleary, B. M. Wyvill, G. M. Birtwistle, and R. Vatti. Multiprocessor Ray
Tracing. Computer Graphics Forum, pages 3—12, 1986.

F. C. Crow, G. Demos, J. Hardy, J. McLaugglin, and K. Sims. 3d image
synthesis on the connection machine. In Proceedings Parallel Processing for
Computer Vision and Display, Leeds, 1988.

M. A. Z. Dipp’ e and J. Swensen. An Adaptive Subdivision Algorithm and
Parallel Architecture for Realistic Image Synthesis. ACM Computer Graphics,
18(3): 149-158, Jul 1984.

S. A. Green and D. J. Paddon. Exploiting Coherence for Multiprocessor Ray
Tacing. IEEE Computer Graphics and Applications, pages 12-27, Nov 1989.

H. Kobayashi, S. Nishimura, H. Kubota, T. Nakamura, and Y. Shigei. Load
Balancing Strategies for a Parallel Ray-Tracing System Based on Constant
Subdivision. The Visual Computer, 4(4): 197-209, 1988.

A. J. F. Kok. Ray Tracing and Radiosity Methods for Photorealistic Image
Synthesis. PhD thesis, Delft University of Technology, Jan 1994.

T. T. Y. Lin and M. Slater. Stochastic Ray Tracing Using SIMD Processor
Arrays. The Visual Computer, 7:187-199, 1991.

D. J. Plunkett and M. J. Bailey. The vectorization of a ray-tracing algorithm for
Improved Execution Apeed. [EEE Computer Graphics and Applications,
5(8):52-60, aug 1985.

T. Priol and K. Bouatouch. Static Load Balancing for a Parallel Ray Tracing on a
MIMD hypercube. The Visual Computer, 5:109-119, 1989.

E. Reinhard. Hybrid Scheduling for Parallel Ray Tracing. TWAIO final report,
Delft University of Technology, Jan 1996.

I. D. Scherson and C. Caspary. A Self-Balanced Parallel Ray-Ttracing Agorithm.
In P. M. Dew, R. A. Eamnshaw, and T. R. Heywood, editors, Parallel Processing
for Computer Vision and Display, Volume 4, pages 188—-196, Wokingham, 1988.
Addison-Wesley Publishing Company.

L. S. Shen, E. Deprettere, and P. Dewilde. A New Space Partition Technique to
Support a Highly Pipelined Parallel Architecture for the Radiosity Method. In

106

[14]

[15]

(16]

(17]

(18]

[19]

Advances in Graphics Hardware V, proceedings Fifth Eurographics Workshop
on Hardware. Springer-Verlag, 1990.

E. R. Frederik, W. Jansen . Rendering Large Scenes Using Parallel Ray Tracing.
Parallel Computing, pages 873-885, 1997

T. Wilson, N. Doe. Acceleration Schemes for Ray Tracing. Report Number: CS-
TR-92-22, Department of Computer Science, University of Central Florida,
September 1992.

R.L. Cook, T. Porter, L. Carpenter. Distributed Ray Tracing. Computer Graphics
(Proceedings of SIGGRAPH 1984), 18(3), 137-145, July 1984.

RL. Cook. Stochastic sampling in computer graphics, ACM Transaction in
Graphics 5(1), 51-72, January 1986.

A. S. Glassner (Editor), An Introduction to Ray Tracing, Academic Press 1989.

Ray Tracing Bibliography,
http://www.cm.cf.ac.uk/Rav.Tracing/RT.Bibliograth.html

Simulated SAR References

(1]

(2]

3]

[4)

(5]

[6]

(7]

D.J. Andersh, M. Hazlett, S.W. Lee, D.D. Reeves, D.P. Sullivan and Y. Chu,
"Xpatch: A high fre-quency electromagnetic-scattering prediction code and
environment for complex three-dimensional objects," IEEE Antennas &
Propagation. Magazine, vol. 36, pp.65-69, 1994.

J. Baldauf, S.W. Lee, L. Lin, S.K. Jeng, SM. Scarborough, and C.L. Yu, "High
frequency scattering from trihedral comner reflectors and other benchmark targets:
SBR vs. experiment," JEEE Transacrions on Antennas and Propagation, vol. 39,
pp. 1345-1351, 1991.

R. Bhalla and H. Ling, Image-domain ray tube integration formula for the
shooting and bouncing ray technique, University of Texas Report, NASA Grant
NCC 3-273, July 1993.

R. Bhalla and H. Ling, "A fast algorithm for signature prediction and image
formation using the shooting and bouncing ray technique," to appear in JEEE
Transactions on Antennas and Propagation, 1995.

G. Franceschetti, M. Migliaccio, D. Riccio, and G. Schirinzi, "SARAS: A
Synthetic Aperture Radar (SAR) Raw Signal Simulator," IEEE Transactions on
Geoscience and Remote Sensing, Vol. 30, No. 1, January 1992.

G. Franceschetti, M. Migliaccio, and D. Riccio, "SAR Raw Signal Simulation of
Actual Ground Sites in Terms of Sparse Input Data," IEEE Transactions on
Geoscience and Remote Sensing, Vol. 32, No. 6, November 1994.

D.E Herrick and 1J. LaHaie, SRIM Polarimetric Signature Modeling, ERIM
IR&D Final Report 675805-1-F, December 1988.

107

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

(16]

[17]

D.E Herrick and B.J. Thelen, "Computer Simulation of Clutter in SAR Imagery,"

Proceedings of the Progress in Electromagnetics Research Symposium,
Cambridge, MA, July 1991

D.E Herrick, "Computer Simulation of Polarimetric Radar and Laser Imagery,"
in Direct and Inverse Methods in Radar Polarimetry, W.-M. Boemer et al. (eds),
Klumer Academic Publishers, The Netherlands 1992.

D.E Herrick, M.A. Ricoy, and W.D. Williams, "Modeling of Foliage Effects in
UHF SAR", Proceedings qfthe Ground Target Modeling and Validation
Conference, Houghton, MI, August 1994.

D.E Herrick, M.A. Ricoy, and W.D. Williams, "Synthesizing SAR Signatures of
Ground Vehicles with Complex Scattering Mechanisms", Proceedings of the

Ground Target Modeling and Validation Conference, Houghton, MI, August
1994.

E.R. Keydel, D.E Henick, and W.D. Williams, "Interactive Countermeasures
Design and Analysis Tool," Proceedings of the Ground Target Modeling and
Validation Conference, Houghton, MI, August 1994,

S.W. Lee and D.J. Andersh, On Nussbaum Method for Exponential Series,
Electromagnetic Laboratory Technical Report ARTI-92-11, University of
Illinois, Urbana, November, 1992.

H. Ling, R.C. Chou, and S.W. Lee, "Shooting and Bouncing Rays: Calculating
the RCS of an arbitrarily shaped cavity," IEEE Transactions on Antennas and
Propagation, vol. 37, pp. 194-05, 1989.

JM. Nasr and D. Vidal-Madjar, "Image Simulation of Geometric Targets for
Spaceborne Synthetic Aperture Radar", IEEE Transactions on Geoscience and
Remote Sensing, Vol. 29, No. 6, November 1991.

N.D. Taket, S.M. Howarth, and R.E. Burge, "A Model For the Imaging of Urban
Areas by Synthetis Aperture Radar," IEEE Transactions on Geoscience and
Remote Sensing, Vol. 29, No. 3, May 1991.

M.R. Wohlers, S.Hsiao, J. Mendelsohn, and G. Gerdner, "Computer Simulation
of Synthetic Aperture Radar Images of Three-Dimensional Objects," IEEE

Transactions on Aerospace and Electronic Systems, Vol. AES-16, No. 3, May
1980.

Image Understanding

[Castleman]

[Maragos]

[Parker 94]

Castleman, K., Digital Image Processing, Prentice-Hall, 1979.

Maragos, P., “Tutorial on advances in morphological image processing and
analysis,” Optical Engineering, vol. 26, no. 7, pp. 623-632, July 1987.

Parker, J., Practical Computer Vision Using C, Wiley, 1994.

108

[Parker 97]

[Unser]

[Weeks]

Parker, J., Algorithms For Image Processing And Computer Vision, Wiley
Computer Publishing, 1997.

Unser, M., “Sum and Difference Histograms for Texture Classification,” JEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-§,
1:118-125, 1986

Weeks, A., Fundamentals of Electronic Image Processing, SPIE/IEEE series on
imaging science & engineering, 1996.

Fourier Transform

[Duhamel90] Duhamel and Vetterli, “Fast Fourier transforms: a Tutorial Review and State of
the Art,” Signal Processing, vol. 19, pp.259-299, April 1990.

[Cooley] Cooley and Tukey, “An Algorithm for Machine Computation of Complex
Fourier Series,,” Math. Comp., vol. 19, pp.297-301, April 1965.

[Ganapa] Ganapathiraju, Hamaker, Picone and Skjellum, "Analysis and Characterization of
Fast Fourier Transform Algorithms," MS State High Performance Computing
Laboratory, Oct. 1997.

[Duhamel84] Duhamel and Hoolomann, “Split Radix FFT Algorithm,” Electronic Letters, vol.
20, pp.14-16, Jan 1984.

[Rader] Rader, “Discrete Fourier Transforms when the Number of Data Samples is
Prime,” Proc. of the IEEE, vol. 56, pp.1107-1108, June 1968.

[Frigo] Frigo and Johnson, The FFTW web page, http://theory lcs.mit.edu/~fftw

[Frigo99] Frigo, “A Fast Fourier Transform Compiler,” MIT Laboratory for Computer
Science, Feb. 16, 1999.

[Saidi] Saidi, “Decimation-In-Time-Frequency FFT Algorithm,” Proc. of International
Conference on Acoustics, Speech, and Signal Processing, vol. III, pp.453-456,
Adelaide, Australia, April 1994.

[Johnson] Frigo and Johnson, The BenchFFT web page, http://theory.lcs.mit.edu/~benchfft

Data Management

[Guttman] Guttman, “R-Trees: A Dynamic Index Structure for Spatial Searching, ” Proc.
ACM SIGMOID, pp. 47-57, June 1984.

[Kornacker] Kornacker, Banks, “High-Concurrency Locking in R-Trees,” Proceedings of 21st
International Conference on Very Large Data Bases, pp- 134-145, September
1995.

[Sellis] Sellis , Roussopoulos, and Faloutsos, “The R+-Tree: A Dynamic Index for Multi-

Dimensional Objects,” Proc. 13th International Conference on Very Large Data
Bases, pp. 507-518, Brighton, September 1987

109

Appendix A: DIS Benchmark Suite: Data Management Software Design

This document describes the baseline software design of the Data Management
benchmark for the DIS Benchmark Suite. The document is separated into two parts; the first part
presents the design approach at a high-level, describes various implementation decisions, and
explains the interaction between the individual function descriptions. The second part presents
the low-level descriptions of the individual routines and methods which make up the baseline
application.

A. DESIGN DESCRIPTION

A.l GOALS
Several goals were established and followed for this design:

e Accurately follow the Data Management specification as described in the DIS Benchmark
Suite[AAEC-1].

e Strike a balance between easily understandable source code and optimized source code.
Optimization usually has the effect of making software implementation more complex or
more difficult to immediately understand. However, the baseline design should represent a
“reasonable” database application and the baseline performance figures should be comparable
to a real application which indicates some optimization. The choice of whether to use a
specific optimization technique is determined by the amount of performance increase versus
the degradation of the general user to determine the underlying process.

e Provide a complete application which is reasonably robust for a general execution. The
application should handle generic errors (unable to locate input files, memory allocation
failures, etc.) gracefully, and return control to calling process without an abrupt failure. The
application should not be expected to handle hardware specific or special errors unique to a
platform or hardware configuration. Also, when errors would require a large amount of code
to detect and/or fix, the design reverts to the primary goal of optimization/understandability.

e Provide baseline source code which is relatively easy to understand and modify to a particular
implementation approach. The design should allow the alteration of the underlying database
algorithms without causing a major shift in the design paradigm.

e TFollow the DIS Benchmark C Style Guide[AAEC-2] for the development phase of the
baseline source code. The style guide lists several aspects of the source code which can be
incorporated into the design segment.

A2 CONVENTIONS

Several conventions are used in this document to clarify the design and implementation
of the benchmark.

e A function name will be italicized when referenced within a text setting.
e Structures are in bold type when referenced within a text setting.

e Control flow in diagrams is denoted by arrows on solid lines.

A-l

e Subroutines and/or actions within statements, denoted by rectangular boxes, are referenced by
dashed lines.

e Subroutines are denoted by “bold” rectangular boxes.
A3 DESIGN OVERVIEW

The Design Overview section consists of a review of the requirements given by the DIS
Benchmark Specification {AAEC-1] for the Data Management Benchmark. This is followed by
the high level design description for the application as a whole which includes control flow and a
separation of the required tasks into modules. The modules and their respective routines are
described in following sections.

A.J3.1 Benchmark Specification Requirements

The Data Management benchmark consists of the implementation of a simplified
database which uses the R-Tree indexing algorithm. The R-Tree index is a height-balanced
containment structure which uses multidimensional hyper-cubes as keys. The intermediate nodes
are built up by grouping all of the hyper-cubes at the lower level. The grouping hyper-cube of an
intermediate node completely encloses all of the lower hyper-cubes, which may be points. The
application must respond to a set of command operations: Initialization, Insert, Delete, and
Query, queries being either key-based or content-based. The commands are issued to the system
in a batch form as a data set.

The Initialization command operation specifies the fan or order of the index tree.

The Insert command operation places a new data object into the database with the
specified attribute values. Each Insert command contains all the information contained by the
data object, including the hyper-cube key and list of non-key attribute values.

The Query command operation searches the database and returns all data objects which
are consistent with a list of input data attribute values. The input attribute values can specify
attribute values which are key, non-key, or both. A data object is defined to be, or is considered
consistent with, the Query when the input values intersect the stored values of the data object.

The Delete command operation removes all objects from the database which are consistent
with a list of input data attribute values. The types and conditions of the input attribute list, as
well as the description for consistency, are the same as for the Query operation.

Each entry in the database will be specified by the Insert command and will be one of
three types: Small, Medium, or Large. Each data object has a set of attributes which consists of
the key and non-key attributes. The first eight attributes represent the index key and is specified
as eight 32-bit IEEE floating-point numbers representing a four-dimensional point in Euclidean
space denoted as the T-position, X-position, Y-position, and Z-position, of both the “lower” and
“upper” points of a hyper-cube, respectively. Also, each object has a constant number of non-key
attributes or parts. A non-key attribute is an 8-bit NULL-terminated ASCII character sequence of
maximum length 1024. The number of attributes assigned to each data object type is given in
Table A.1. The attributes for a given data object reference each other as a single-linked list and
the data object holds a reference to the first attribute in the list which is defined as the head.
Additional indices for use with non-key attributes are not permitted for this benchmark. Thus, a

A-2

Query operation which contains no key search information will search the entire database for
consistent entries.

Table A.1: Data Object Types
Object Type Code |. No.of Non-Key Attributes . .

Small 1 10
Medium 2 17

Large 3 43

A3.2 Design Description

The benchmark requires a complete application which can read the input file and process
all of the commands. Figure A-1 shows a high-level execution flow for a generic benchmark
database application. The first step is an initialization step which would create the index, open
files, etc. The application then enters a loop which gets the next command code, collects metric
information required by the specification, and then the execution branches based on the code.
Each branch gets the appropriate command from the input and applies the command to the index.
The “middle” branch is for the Query command and has an extra step of delivering the response
of the Query to the output. The loop is repeated until there are no more commands to process.
After the loop, an exit step is taken to close files, free memory, etc.

Get Next Command Code
until no more commands
left in input file

l

Collect Metric
Data

Switch on
Command Code

I Get Insert Command | | Get Query Command I l Get Delete Command |
Insert Data Query Delete consistent
Object into Database Data Objects from
Database \l Database

QOutput Query
Response
Exit

Figure A-1: Application Execution Flow

The outline above indicates that some of the tasks will require input (getting the
command code and commands) and output (query response output and metric data output)
functionality. The index management requires three separate tasks for each command. Finally,
the metric data collection is another task required by the specification. The baseline design
separates the application tasks into three separate modules: Database, Input & Output, and
Metrics. The Database module implements the R-Tree index which includes index maintenance
and query response. The Input & Output module handles the input of the data set, output of the
query responses from the database module, and the output of the metric performance figures. The
Metrics module determines the timing information for the baseline performance and any other
statistical measures applied to the baseline application. The modules are used to allow separate
development of portions of the baseline application simultaneously. Also, the different
benchmark implementors can pick and choose which module, if any, to develop using their own
implementation. Complete separation of tasks into their modules would normally require a layer
of interface routines which would be used to transfer data between the modules. This extra layer
of interface would increase the size of the baseline source code and introduce complexity for a
relatively simple application. In order to minimize the source code size and complexity, the extra
layer of interface will either not be used or will be incorporated into some of the routines in the
modules. This “incorporation” will cause some of the routines to be specific to other modules
besides their own, i.e., the modules will not be completely “plug and play”. In order to minimize
the effect on all of the modules, the Input & Output module is chosen to contain all of the effects,

A4

i.e., the Database and Metrics modules will not contain any information outside of their
respective modules, but the Input & Output will.

——)r query
—"| delete J Database
—>|ﬁ insert |
%li getNextCommandCode J
Data
Management | { .
main —)’7gellnszr1Commmd J

—’f cetOunery Commend J :) Input & Output

-—>|7 getDeleteCommand J

Figure A-2: Modules and High-level Routine Hierarchy

A functional hierarchy for the baseline design is shown in Figure A-2. Each function is
represented by a box and is connected in the hierarchy by a solid line representing the calling
function. Also, the functions are grouped by module and the modules are delimited by shaded
boxes. The only function which does not have a calling function is the main function which is
called by the user or system. The expansion of Figure A-1 into more detail is straightforward and
is shown in Figure A-3. The figure shows an expanded series of steps and a set of routines which
support each step.

A-5

== openFiles
Key: ' Initialize }

—> contro} flow == getInitCommand

-------- > function call _____>< getNextCommandCode >

== createlndexNode

== initMetrics Data
setMetrics Data
creaelndexEntry & -- 1
E' .- getInsertCommand getQueryCommand getDeleteCommand
creaeDaaObject ¥z -~ ;
v :; consistentK ey
insertEntry e ---¢-~ insert query | -eeeemeeamedaaaaoo .i E
[
1 -y
v T domeo- v E _; consistentNonK ey
chooseEntry splitNode outputQuery delete -- -:'
v [deleteEntry
partitionEntries
updateMetrics Data
SlushOutputBuffer
15 closeFiles
i
E > outputMetricsData {--D| calcMetricsData
Exit --d
> deletelndexNode {--> deletelndex Entry
A"}
deleteDataObject

Figure A-3: Detailed Application Execution Flow

The Initialize step is used to initialize all three modules. The Input & Output module is
initialized by opening the appropriate files for input of the data set and output of the query
responses and metrics. The Database module is initialized by two routines. The first gets the
initialization command from the input dataset. This command specifies the fan or order of the
index and is always first within the file and never repeated. The second initialization routine is
createlndexNode which creates the root node of the new index. The Metrics module is initialized
by its own routine which will access system level timing routines to determine the start time of
the application.

A-6

The step where the Metrics module collects data is now split into two steps and another
step is added between them which flushes an output buffer. The secondary metrics for the
benchmark requires timing of the individual commands. The time for a non-response command
operation, insert and delete, to complete is defined as the time difference between the time
immediately before the command is placed in the database input queue and the time immediately
before the next command is placed in the same input queue. The time for a query command
operation to complete is defined as the time difference between the time immediately before the
command is placed in the input queue to the time immediately after the response is placed in the
output queue. The splitting of the metric collection step allows the routine to satisfy these metric
definitions.

The branch of the flow which processes an insert command contains two steps. The first,
getlnsertCommand, gets the command from the input and delivers a data object for insertion by
the insert routine. This requires that the getInsertCommand routine have knowledge and access
to a routine within the Database module to create a data object. The second step of the branch is
the actual insert into the index. The tasks required of an insert are detailed by the specification
and the routines shown in Figure A-3 directly correspond to these tasks.

The branch of the flow which processes a query command contains three steps. The first,
getQueryCommand, gets the command from the input and delivers an index key and non-key
attribute list to be used by the query routine. Note that “missing” values in the input command
(see specification) are defaulted to wild-card values and the getQueryCommand will insert the
appropriate wild-card values into the index key for use by the query routine. This could be
handled by the guery routine, but it was felt that the specification of “missing” values was an
attribute of the input format and thus should be handled by a routine belonging to the Input &
Output module. The query routine should make use of two subroutines, consistentKey and
consistentNonKey. These routines check the key and non-key values of the stored index data with
the input search values. The final step of the query branch is the output of the query response.
Because of the metric data collection considerations (see paragraph above), the routine
outputQuery places the query response into an output buffer and not necessarily to the output file.
The buffer is then flushed when appropriate.

The delete command is processed in two steps. The first, getDeleteCommand, gets the
command from the input and delivers an index key and non-key attribute list to be used by the
delete routine. Note that “missing” values in the input command (see specification) are defaulted
to wild-card values and the getDeleteCommand will insert the appropriate wild-card values into
the index key for use by the delete routine. This could be handled by the delete routine, but it was
felt that the specification of “missing” values was an attribute of the input format and thus should
be handled by a routine belonging to the Input & Output module. The delete routine will search
the index in a manner similar to the query routine and should use the same routines for checking,
consistentKey and consistentNonKey. Also, the delete routine uses a recursive routine to descend
the index removing appropriate data objects and ascending the index removing empty nodes.

The Exit step is used to exit each module. The Input & Output module will close the
appropriate files and output the metric data. The output of the metric data will exit the Metrics
module by calculating the metric statistics. The Database module will free the memory of the
index which deletes all nodes, entries, and data objects which have been placed in the index
during the execution.

A-7

A.3.3 Error Handling

One of the goals for the Data Management software design is to produce a robust
application which will gracefully handle most errors. The strategy by which these errors are
handled is described in this section and is applied uniformly in the application. The primary
approach consists of the return of integer codes from each routine which can fail. A routine will
have a successful return code, indicating that the specific task required of the routine was
accomplished, or one or more error return codes which indicate the specific error that occurred.
The return code indicates the state of the process and any other output data and not necessarily
that no error occurred during the execution of the routine. For example, if an error occurs during
a subroutine but the subroutine recovers, a successful code is returned to the calling process
indicating that all output data and the current execution thread can proceed normally. This
approach implies several characteristics for each routine:

o Each routine will handle all “local” errors. A local error is one caused directly by the system,
e.g., opening files, reading/writing to/from a stream, etc., or by calls to other functional
subroutines. This does not indicate that a routine will abort the execution thread, rather the
routine will return an appropriate error code to the calling function.

e Each routine will “clean-up” before the return. If an error occurred, any memory allocated
during the execution of the routine will be unallocated.

The only exceptions to the return code approach for the baseline design is for system
routines which prescribe a different method and for baseline routines which closely mimic these
system calls. The best examples are the memory allocation functions which return a pointer to
the allocated memory or NULL if an error occurred. Each routine which can fail, lists the success
and error return codes as part of the function description.

All error and/or unusual conditions which arise during execution of the application will
have a descriptive comment placed in the error stream preceded by the names of the routines
where the condition occurred, i.e., an error occurring within subroutine B which was called by
subroutine 4 would have the message,

A> B> error message

where each subroutine name and the actual message are separated by “>“. The message system is
accomplished by two routines: errorMessage and flushErrorMessage. A local buffer is kept by
the routines to allow storage of the message and routine names before flushing and the size of the
buffer is set such that exceeding the limit is extremely rare . The extreme case when the
prepended message is larger than the buffer size will cause the errorMessage routine to
immediately flush the current error buffer along with a message indicating the premature flush.
The errorMessage routine inputs two parameters: (1) A character string which should either
contain a text representation of the condition that occurred or the name of a routine which should
be prepended to the current message, (2) An boolean value indicating that the first parameter
message should replace the current error buffer contents, or the first parameter message should be
prepended to the current error buffer contents. The flushErrorMessage routine takes no
parameters as input and simply places the current contents of the error buffer into the standard
error stream. A call to the flushErrorMessage does not clear the buffer contents.

A-8

A34 Testing

The baseline source code and application requires testing of the software at the unit and
system level. The unit testing description for each routine described in Part II of this document is
included with the routine description. Most follow a similar pattern where a known input/output
data pair is used for the testing. The input portion is provided to the routine and the output of the
routine is checked with the output portion of the pair. If the two sets of output match, the routine
is considered successfully unit tested. Another test consists of memory analysis to attempt to
discover memory leaks and similar errors. If a specific routine requires further unit testing, the
unit testing method is given with the routine description.

A4 DATABASE

The database is specified to respond to three commands: Insert, Query, and Delete. This
section describes the Database module. This description includes how the R-Tree index 1is
implemented and how the three required commands are applied to the index.

A4.1 R-Tree Index Requirements

The requirements for the R-Tree index specified by the DIS Benchmark Suite are the
same as those defined for a generic R-Tree index. A general R-Tree has the following properties:

1. All leaves are at the same level (height-balanced).

2. Every node contains between kM and M index entries unless it is the root. (M is the order of
the tree).

3. For each entry in an intermediate node, the sub-tree rooted at the node contains a hyper-cube
if and only if the hyper-cube is “covered” by the node, i.e., containment.

4. The root has at least two children, unless it is a leaf.

The data management benchmark requires the R-Tree structure be maintained during

‘execution, but the particular methods used to maintain the R-Tree are left for individual

implementors. The baseline design will generally follow the R-Tree algorithm as described by
Guttman[Guttman] with any exceptions noted in the routine descriptions.

A.4.2 R-Tree Index Implementation

A brief description of the index implementation is provided in this section which will
help clarify later discussion of the routines which manipulate or use the index. The index is
implemented as a set of data structures of three basic types as shown in Figure A-4.

DataObject
list attributes
enum data object type
IndexEntry
IndexKey index key
IndexNode child
or
DataObject child
IndexNode
integer level
list index entries

Figure A-4: Basic R-Tree Structures

The first data structure shown is for a DataObject which is the basic storage structure of
the database. A DataObject holds all of the object’s attributes as a list of attributes some of
which are key and the rest non-key. Also, an enumerator which stores the type of data object is
assigned to the DataObject structure. The number of non-key attributes contained in the /ist is
determined by the data object type enumerator and is given in Table A.1. The number of key
attributes in the /ist is determined by the dimension of the R-Tree which is eight for the DIS Data
‘Management benchmark.

The second data structure shown is for an IndexEntry structure which is used as a
reference structure to other portions of the index. The IndexEntry contains two pieces of data.
The first is an IndexKey which is the key information for the object that the IndexEntry
references, i.e., if the IndexEntry references a DataObject then the IndexKey of the IndexEntry
is the appropriate key values of the DataObject. The second piece of data in an IndexEntry
structure is a reference to either a DataObject structure or an IndexNode structure. The
IndexEntry child member will reference a DataObject when the IndexEntry is located at the
leaf level, otherwise, the child member will reference an IndexNode structure, i.e., a branch of
the index. The value of the IndexKey member of the IndexEntry structure when the IndexEntry
references an IndexNode is the enclosing hyper-cube which minimally contains all of the
separate IndexKey structures associated with that IndexNode. This is the containment
characteristic of the R-Tree index.

The third data structure shown is for an IndexNode structure which is used to contain a /ist

of IndexEntry structures. The number of IndexEntry structures in the /ist can vary between one
and the fan or order of the index. Also, the IndexNode structure contains an integer value which

A-10

specifies the level at which the node resides within the index where the leaf is defined to be level
zero and the level increases as the tree is ascended, i.e., the root level is always greater than or
equal to the leaf level.

Figure A-5 shows a schematic of the index tree as described in the previous paragraphs.
The IndexNode structures contain a set or list of IndexEntry structures. Each IndexEntry
structure references either a DataObject or an IndexNode depending on the level where the
IndexEntry is placed. Note that one of the requirements for an R-Tree is that the index is always
balanced, i.e., the distance (number of levels) between the root and a leaf node is the same for
each leaf. This implies that if a node is a leaf, all of the node’s siblings are also leaves.

(upper levels of index) key
Z DataObject
non-key
IndexNode(level = 1)

ImexEmryIlndexEmryJ er FndexEntry

/

IndexNode(level = 0) IndexNode(level = 0) IndexNode(level = 0)
rlndul:mry | lndexEntﬂ | IndexEntry 1 rlndexEntry I IndexEntry | - I}ndexEntrLl et qul:ntry ‘ lnduEnﬂ I;dexEntrLl

gg 5

Figure A-5: R-Tree Index Schematic

The index is manipulated through three main routines: insert, query, and delete. The
routines were chosen to represent each command required by the database. Each of these routines
is described in the following three sections. The description contains background on the tasks

_performed by the function, notes on any specific design decisions which would have particular

impact on anyone modifying the design for hardware considerations, a function hierarchy, and
control flow diagrams.

A.43 Insert

The Insert command places a new data object into the index. The insert command also
specifies the index order or fan (which allows the input dataset to specify the fan at run time via
the Initialization command). A new index entry is created and assigned for the data object. The
insert method descends the tree until the leaf level is reached. Note that the leaf level is zero and
the level increases as the tree ascends, i.e., the root level is always greater than or equal to the leaf
level. The branch or node chosen for descent is determined by comparing the penalty for all
possible branches and the new entry. The branch which has the smallest or minimum penalty is
chosen. Once the specified level is reached, a node is chosen on that level which yields the
minimum penalty and the new index entry is placed on that node. Placement of the entry onto the
node may exceed the specified fan which causes the node to split. The node split separates the
union of the old entries of the node and the new entry into two groups. One group is placed back
onto the old node, and the other group is placed on a new node created for that purpose. The new

node is then placed onto the parent of the old node. This may cause the parent to split and an
identical splitting process is carried out on the parent, which may cause its parent to split, etc.
This splitting may ascend to the root node, which by definition has no parent and so is a special
case. When the root node is split, a new root is created which “grows” the tree. The old root and
the node split off of the old root are then placed onto the new root, and the new root is returned as
the updated index.

A comprehensive example of an index entry insertion, node splitting, and root node
splitting with tree “growth” will help clarify the description above. The insertion of a new index
entry into a current index is illustrated in Figure A-6. The index for this example has a fan of
three, a current height of one, and indexes a total of nine data objects. Figure A-6 shows the
example index and the new entry for insertion. The far right node is chosen for the leaf insertion
which indicates that the chosen node has the smallest penalty of the three branches checked.

new > Node(root)
Insert entry | entry | entry
P —
We:ﬂtr}’
Node Node Node
| entry l entry | entry entry l entry | entry I I entry | entry I entry

= e B

Figure A-6: Insertion of Entry into Index

The chosen node is split since it was full and there was no place for the new entry. A new
node is created along with a new entry called split. The split entry/node is then placed on the
parent of the chosen node, which happens to be the root node for this example. Figure A-7 shows
the split entry/node and the placement of the split entry onto the parent. Note that for the split,
four entries are divided between the chosen and new nodes, and the new entry is placed on the
chosen node rather than the new or split node. The separation of the entries into two groups is
called partitioning.

A-12

Node(root) P— i_SE_Tt_-I
Place split entry

Ie/mry l enry | cntr\yJ onto parent
New Node
Node Node Node [entry I entry]
| entry | entry | entry | | entry [enty | entry | [enty | new |

=

lly

L 5 = e

Figure A-7: Split of Leaf Node

The placement of the split entry onto the parent or root causes the root to split since the root
is full. The split creates a new node/entry pair which is placed onto a newly created root node
along with the old root. This “grows” the tree by one level. Figure A-8 displays the updated
index after the insertion and root split. Note that the tree remains balanced where all of the leaves
are on the same level. The final index has a current height of two and references a total of ten

data objects.

A-13

New Node(new root)

/

Node(old root)

niry

New Node(split root)

Node

Node

Node

' entry I entry l entry I

[entry | entry I entry |

I entry I new |

I entry ! entry |

New Node

===

= B

=

Figure A-8: New Index after Insert Command

=

The insert command is logically split into several different routines which represent each of
the main tasks described above and a functional hierarchy is shown in Figure A-9. Also, utility
routines for the creation and deletion of index entry and index nodes as well as penalty
calculations and index key union routines are shown in the figure.

Data

chooseEntry H

penalty I

Management

main

—]

insert

—)| insertEntry I _)'

i keyUnion l

splitN ode

'_

—)l partitionEntries |

! createlndexN ode |
| createlndex Entry
g S

Database

Figure A-9: Insert Command Function Hierarchy

deleteIndexN ode

deleteIndex Entry

deleteDataObject

The insert routine places a new index entry into the index using the recursive insertEntry
subroutine. The input root node is used as the start of the tree descent. If the root was split, the
tree “grows” by creating a new root and placing the old root and the split entry onto the new root

and returning the new root as the updated index. A control flow diagram for the insert routine is
shown in Figure A-10.

index node, root
index entry, newEntry

Start

insertEntry(root,newEntry)

Adjust Key

No Create newRoot

Place root and splitEntry
on newRoot

Setroot = newRoot

Return

index node, root

Figure A-10: Insert Control Flow Diagram

The primary reason that a non-recursive insert routine was chosen as a wrapper for a
recursive insertEntry routine was for the special case of root node splitting. For every node in the
index which splits, the parent node is responsible for placement of the new sibling split
node/entry. This approach is valid for all nodes in the index except the root node which has no
parent. Instead, the root node must “grow” the index. This unique task for the root node is best
handled in a separate non-recursive routine and the recursive nature of all other insert/splits
should be handled separately. A modified insertEntry which checks for root splitting is possible
and would have the advantage of eliminating an “extra” subroutine since there would be no need
for insert. However, the insert routine is used for this implementation because the modified
insertEntry would check each node for root splitting, which isn’t necessary, and the additional

A-15

clarity of placing the special case of root splitting into a separate routine. The insertEntry routine
control flow is shown in Figure A-11.

index node, N
index entry, newEntry

Yes

chooseEntry(N . entries, chosen)

insertEntry(chosen. child,newEntry)

Adjust Key

Yes

splitN ode

Place entry splitEntry is valid

splitEntry is invalid

Return

index entry, splitEntry

Figure A-11: Insert Entry Control Flow Diagram

Note that the insertEntry routine is recursive and is called for every node during the descent
to the correct level. Also, the insertEntry routine calls two other routines called chooseEntry and
splitNode.

A-16

The chooseEntry function is used to determine which branch of the current node to
descend. The routine does this by determining which branch will yield the minimum penalty for
the insertion. The penalty for the R-Tree index is the increase in hyper-cube volume.

The splitNode routine splits an input node into two nodes and divides up the entries via the
partitionEntries function. The partitionEntries function is one of the most important routines
implemented in the baseline source code. The partitionEntries function separates an input list of
index entries into two groups. The method used for partitioning the entries is extremely
implementation dependent. The basic idea is to set-up the two output index entry lists to have
minimal bounding hyper-cubes which will improve later queries on the index since fewer
branches of the index will need to be traversed to satisfy the query command. However, the
method itself is probably the most computationally expensive of the insertion subroutines,
because multiple loops through the index entry lists and penalty calculations are required for true
“minimal” bounding hyper-cubes to be determined. If multiple branch searches is not
prohibitive, i.e., a parallel search is possible or query response is not time consuming relative to
an insert operation, then the partition subroutine can use a sub-minimal approach. The basic idea
is not to spend too much time arranging the index when the pay-off, query performance, will not
yield significant performance improvement. For example, if an insert command requires 10
seconds to minimally arrange the current index, and the insert is followed by 5 queries each of
which requires 1 second to complete, then the total time of operation is 15 seconds. However, if
an insert command would only require 5 seconds to sub-minimally arrange the current index, and
each of the five queries can be accomplished in 1.25 seconds, then the total time of operation is
11.25 seconds which is an overall savings of 3.75 seconds even though the insert operation was
“sub-optimal”. In fact, the partition can simply split the input list into two equal groups ignoring
the bounding hyper-cubes completely. The effect will be to cause new traversals of the index to
descend multiple branches, but this trade-off may be acceptable for a given implementation.

A two-dimensional example of how the partitionEntries function operates and a
modification will illustrate this point. The example consists of five entries to partition into two
groups as show in Figure A-12. Objects 1 and 5 produce the “worst” or largest bounding index
key so they are chosen as the first entries for the two new groups.

~ “worst” pair - produces
1 largest bounding index key

1

E-N

Figure A-12: Partition Entries Example 1

The index keys of all of the following Objects 2, 3, and 4 are done in a similar fashion and
are shown in Figure A-13-Figure A-15. For each object 2-4, the penalty is found between the
object and objects 1 and 5 The object is assigned a group based on which penalty is smaller,
where a smaller penalty indicates an “attraction” to the group, i.c., the addition of the candidate

A-17

box would cause less of an increase in area for the group compared to the increase in area for the
other group.

................

Figure A-15: Partition Entries Example 4

The five objects are now in two groups as shown in Figure A-16 and which produce
minimal bounding index keys for each group. This partition will improve later index traversals
since multiple branches need not checked since there is minimal (or in this case none) overlap of
the stored index key entries. An example query key is shown in Figure A-16 which intersects

A-18

(consistent) with Object 2. Note that the branch which contains Object 3 and Object 5 will not be
searched for this query key.

Figure A-16: Partition Entries Example 5

A very simple and computationally “cheap” method is to partition the input entries into
two equal, or nearly so, groups. If this is applied to the previous example of Figure A-12, the
following two groups are produced in Figure A-17:

Figure A-17: Partition Entries Example 6

Object 1, 2, and 3 are assigned to the first group and Object 4 and 5 are assigned to the
second group. This produces a very fast partition routine, but the same query key example for
Figure A-16, which is also displayed in Figure A-17, will cause both branches to be searched,
even though no objects will be found in the second group.

The utility routines which manage the creation and deletion of the index structures
consist of three pairings: createlndexEntry and deleteIndexEntry, createlndexNode and
deleteIndexNode, and createDataObject and deleteIndexObject. The routines allocates the
correct amount of memory for each type of structure and sets default member values. The
deletion routines will be recursively implemented, i.c., an index entry which is deleted will first
delete either the index node or data object it references, and an index node which is deleted will
first delete each entry that resides on that node, etc. Thus, an entire branch of the index can be
deleted with a minimum of source code.

A-19

A44 Query

The Query command inputs key and non-key information and returns all data objects
currently in the index which are consistent with the query input. The Query command simply
traverses the index and does not alter the index or data objects in any way. Since the query can
operate on any index node regardless if it is the root or not, a recursive implementation is ideal.
Since non-leaf entries reference index nodes rather than data objects, the query should treat leaf
nodes and non-leaf nodes differently. Entries of non-leaf nodes which have consistent index keys
compared with the input value, should query the child of the entry which is also an index node.
Entries of leaf nodes are data objects and both the index key and non-key input values should be
checked for consistency. Most of this processing can occur in a single routine with utility
subroutines provided which will perform the consistency checks and check the validity of the
keys before they are processed. The validity check is necessary to prevent a query search which
would return nonsense values. Figure A-18 shows a functional hierarchy of the query command
with the routines mentioned.

Data
Management

main

Database

Figure A-18: Query Command Functional Hierarchy

Figure A-19 shows a flow chart of the query algorithm. The routine first uses the R-Tree
index to find individual leaf nodes which point to data object’s which have index keys which are
consistent with the search key. The found data object’s non-key attributes are then compared
with the input list of non-key search values for consistency. The input list of non-key search
values consist of the attribute code and a character sequence.

A-20

node, N
index key, K
non-key list, A

_)<I;p for each entry E of N>

g No #

L’ = query(E.child,K,A)

v

L=L+L’

Add E.childto L

;

solution list, L

Figure A-19: Query Control Flow Diagram

The time required for a2 Query command is traditionally the primary metric for database
applications. Most algorithms and implementations of the R-Tree index assume that faster query
operation, even at the expense of index maintenance, is always desirable. This is not the case for
the DIS Benchmark Suite]AAEC-1] which attempts to measure both the query performance and
index maintenance performance via the Insert and Delete commands. The usual method of
improving query performance is by minimizing the overlap of the index keys in the R-Tree, since
an index with a relatively large amount of overlap will cause the query to descend multiple
branches of the index tree. However, minimizing overlap is generally the most computationally
expensive of the index maintenance methods. In traditional systems, this overhead is delegated to
“low” user time or when the system is idle, but DIS assumes there will be no down time for index
maintenance and that new systems will need to perform maintenance while still responding to
user queries. Obviously, a trade-off occurs between query performance and index maintenance
performance.

A.4.5 Delete

The Delete command removes one or more data objects from the index. The command
inputs both key and non-key data and removes all data objects which are consistent with the input

A-21

values. Thus, a portion of the command will resemble a Query by traversing the index checking
key values. Once a data object has been found which is consistent with the input key and non-
key search values, the data object and the index entry which references that object are removed
from the index and the parent of the node where the deleted entry resides will need to adjust its
index key since the child it references has changed. After one or more entries have been removed
from the index for a particular node, some type of judgment must be made about the node and its
remaining entries. If there are no entries left on the node, the node is no longer required and
should be removed from the index. This requires that the entry which references the obsolete
node be removed which may cause a chain reaction up the tree removing any nodes which are
empty. The process could continue to the root node which would be removed if it had only one
child, since any root node with only one child is redundant because the child could serve as a new
root. If the node is not empty after the deletions, the number of entries left may be small
compared to the fan or some pre-defined limit. A common practice is to specify a minimum fill
factor and any node after the deletions whose number of entries is less than this factor would be
removed and the remaining entries re-inserted into the index.

A comprehensive example of a data object deletion, node removal, and root node tree
“shrinkage” will help clarify the description above. Figure A-20 shows an example index with a
fan of three, current height of one, and indexes a total of ten data objects. Five data objects are to
be deleted and are highlighted by dashed boxes. The process in choosing these objects would
take the form similar to a query command, i.e., traversing the index using an input index key
search value and choosing data objects by using the input index key and non-key search values.

Node(root)

Ientrylenlryl

/

Node Node

ARNEVARN

Node od
|en1:y|entry|cntry| Ientrylenu'yl entry | entry

=

z
@

s |
5
8
a
8
3

Data Objects

to Delete —> % é

e

iy

[

(I

(L

Figure A-20: Deletion of Data Objects from Index

Figure A-21 shows the index after the data objects have been removed. One node is
completely empty and should be removed from the index. A sibling node has only one entry and
will be considered “underfull” for this example. Note that removing the node requires that the
entry be placed in a re-insertion list outside of the current index

A-22

Node(root)

lemrylentryl

=

Node Node

o o

N

™ VAN

Node Node Node

8
g

Z

ode

entry try

3

/ T

1
Underfull Node Empty Node
to
Remove

- re-insert entry
Figure A-21: Node Removal

[

(A

=

T

Once the two nodes at the leaf level have been removed, a node one level higher is now
empty and should be removed as well as shown in Figure A-22. This is part of the chain-reaction

referred to in the delete command description above.

Node(root)
Entry to Re-Insert ' entry I entry |
=
/ \
Node Node

(L

VAN

Empty Node
pt)t’o Node

Remove r_‘l_j
entry | entry

Node

entry

Figure A-22: Further Node Removal

[l iy
(T2

Figure A-23 shows the index after the final node removal. The root now has only one

child and violates the fourth condition for an R-Tree specification given

in section A.4.1. The old

root node is replaced by its child, since a root with only one child is redundant. Note that this

process could be recursive, i.e., if the child of the old root also had

A-23

only one child, then the

“grandchild” of the old root would be the new root, etc., until fourth condition of section A.4.1 is
satisfied.

Entry to Re-Insert Node(root)

entry I entry

L T

Root Node has new root Node
only one child -
make child new entry | entry
root / \
Node Node

Iy

(L
iy
iy

Figure A-23: Shrinking the Index Tree

The index after the node removals and root replacement is shown in Figure A-24. Any
entries which were removed because their nodes were underfull are now re-inserted into the
index. The example has only one entry to re-insert, although the length of the list is unlimited.
For an entry which references a data object, the re-insert process should be identical to the
process followed by the index for an insert command, i.e., tree descent by minimizing the penalty,
possible node splitting requiring entry partition, and possible tree “growth”. It is possible for an
entry placed in the re-insert list to reference an index node rather than a data object. The entry for
this case should reside at a level other than the leaf level and the insert process must be able to

| accept an index entry insertion with a specified level in order to keep the tree balanced, i.c., all of
the leaf nodes are at the same level. The description of the insert process described in section
A.4.3, particularly using the insertEntry routine, allows for a level to be specified.

A-24

Re-Insert
Node(root)

Ienhylcntryl

N

Node Node

lemry entryl entry | entry

=

Figure A-24: Re-Insertion of Entry

TII-—2]

iy

The insertion of the one entry does not cause node splitting for this example and the final
index after the complete delete command processing is shown in Figure A-25. The index has a
current height of one and references five data objects using three nodes.

Node(root)

VAN

Node Node

(e [on (]| ([o]

Il
iy

[

Figure A-25: New Index after Delete Command

There are two major issues for the delete command implementation. The first centers on
when node removal occurs during the delete operation. Note that this issue is always present
since the deletion of data objects can always cause an empty node to appear. The second issue
deals with the concept of a node being “underfull” and is a design decision on whether to
implement the behavior for index management.

Node removal should occur whenever an index node is empty. A node can become
empty through data object deletion (leaf nodes) or a node being “underfull”. The question of
when removal occurs is the issue and can be implemented in one of two ways. The first approach
would traverse the index removing the consistent data objects. During the traversal, the nodes are
checked and removed immediately. After the index has been completely traversed, the delete
command has been successfully processed and the index is fully updated requiring no further
traversals of the index, although the root node may need to be replaced by a child as described

A-25

earlier. The second approach would traverse the index removing the consistent data objects, but
would not check the nodes for removal. Instead, after the traversal which removed the data
objects, another traversal would take place which would “condense” the tree by checking each
node for removal. The second approach has the primary advantage of separating the deletion
behavior into two “steps” which can be independently implemented and executed. The idea
would be that a condense routine would be implemented after a delete, but not necessarily “right”
after. The tree could be condensed during idle time when no other commands are awaiting
execution. However, the DIS Benchmark Suite specifically states that this type of idle condition
will not be present during the execution of the baseline data. Also, the extra traversals which
would be required would likely lead to an inefficient implementation for large indices. Since the
benchmark specifies that index management performance is of primary concern, the first
approach is chosen for the baseline design. Different architectures, especially parallel hardware,
could make use of the condense routine approach. Although the system is always at a high load
(commands are always awaiting processing), individual processors within a parallel architecture
may experience idle time which could be taken advantage of by executing a condense routine.

The second design issue is the implementation of re-inserting entries of “underfull”
nodes. The behavior is not required by the R-Tree algorithm which does not specify a minimum
number of entries for an index node. However, the implementation of re-insertion allows the
index to be further “condensed” which will improve performance for later index traversals and
helps to avoid the undesirable condition of a “sparse” index where the tree has a large height for a
relatively small number of data objects to reference. The introduction of this behavior
significantly increases the complexity of the delete processing, since it introduces a new re-
insertion index entry list which will also need to store the level that the entry needs to be inserted
since entries other than leaf entries are possible. Also, an extra step is required during processing
to account for the re-insertion process, and although most of the process would be identical to the
insert command process, some slight modifications would be required and the extra level of
processing would degrade the delete index management performance. The DIS Benchmark Suite
specifically states that the data set will be highly dynamic with a relatively large number of index
management commands, Insert and Delete, compared to Query operations. The baseline
application will not implement re-insertion behavior to reduce the complexity of the baseline
source code and will rely on the dynamic nature of the data indexed by the database to place the
burden of efficient index traversal on the insertion operations.

A functional hierarchy for the delete process is shown in Figure A-26. Four of the

routines are also used by the query routine to key and non-key consistency checks and to check
key and non-key validity.

A-26

vadlidK ey consistentK ey

Data . .
validNonK ey consistentNonKey
Management delete -

main

deleteEntry keyUnion

delete DataObject

N
Database LS deletelndexEntry]

1

deletelndexN ode

Figure A-26: Delete Command Function Hierarchy

Since node removal occurs immediately, the delete process for an individual node can be
placed in a recursive routine called deleteEntry which is shown in Figure A-27. This routine will
process leaf and non-leaf nodes differently. The entries for leaf nodes are checked for
consistency with the input search values. If appropriate, the data object and entry are removed
and a flag set to indicate to the parent of the entry to adjust the index key. The entries for non-
leaf nodes are check for consistency with the input of the key search values only, since no non-
key values are present to check. If the entry is consistent, the deleteEntry routine is recursively
called to possibly remove data objects “beneath” the current node. Upon return from the
recursive call, the index can be in one of three conditions: (1) No entries were removed, so no key
adjustment is required, (2) One or more entries were removed but the child node is not empty, so
only a key adjustment is required, and (3) One or more entries were removed and the child node
is empty, so the node should be removed negating a key adjustment, although the parent of the
current node will still require a key adjustment. Note that both “branches” of the control flow are
similar to the Query command shown in Figure A-19, with the difference in what is done with the
result of the key and non-key consistency checks.

A-27

node, N
index key, K
non-key list, A

No
\/Loop for each entry E of N>
Set temporary adjust key
flag= false
Yes \I,
deleteEntryt(E. child, K, A, flag)
Remove E
Set adjust key flag= true Remove E Adjust Key
Set adjust key
flag= true

adjust key flag, flag

Figure A-27: Delete Entry Control Flow Diagram

The deleteEntry routine will correctly implement the process for all nodes except the root
node. The situation is similar to the insert routine described earlier and a similar solution is
chosen for the implementation. A special routine called delete, shown in Figure A-28, will
implement the command when the current node is the root node. Thus, the main routine should
only delete data objects through the delete routine and not the deleteEntry routine. The first part
of the delete routine simply calls the deleteEntry routine above. Depending on whether the node
is a leaf or non-leaf node, each entry on the node is checked for consistency and processed,
recursively calling deleteEntry as required, thus the entire index is processed. Upon return from
the recursive deleteEntry, the index is in one of three states as described above for any node, but,
since the root node has no parent, the information is not processed in any way. However, if the
input search key and non-key values caused all of the data objects referenced by the index to be

removed, then the root node will have an empty entry list and may have a specified level greater
than the leaf level. This case is easily handled by simply setting the root node level to the leaf
level and continuing. If the root node has only one child and is not a leaf node, the child becomes
the new root as required by the R-Tree specification. The single child check is repeated until the

condition is satisfied.

root node,
index key,
non-key list,

deleteEntryt(N, K, A, flag)

»RZ

N.entries
empty?

Set N level to LEAF

i

-

While N has one child >

Replace N with child

rootnode, N

Figure A-28: Delete Control Flow Diagram

‘A5 INPUT & OUTPUT

The Input & Output module localizes the system level /O routines and allows separate
development of the database algorithms without requiring a complete application “wrapper”. The
first section reviews the input specification requirements which includes a discussion of all four
commands. The second section reviews the output specification requirements. The final section
discusses the implementation of the module.

A.5.1 Input Specification shortcut keys

The input for each test of this benchmark consists of one data set. All of the data sets
share a common format. Each set is a 8-bit ASCII character file and consists of a series of
sequentially issued commands delimited by a carriage return, i.e., each line of the file represents a
separate command. Table A-2 gives the command operations, the character code used to
designate the command, the data placed after the command code on the rest of the line, the return
expected from the application, and a brief description of the operation.

A-29

Table A-2: Command Operations
Command | Code Line Elements Return Description
Initialization 0 Fan Size NULL Initializes the index by
specifying the fan of
the tree.
Insert 1 Object Type NULL Insert new entry into
database. See below for
Key Attribute discussion of the
Object Type and key
Key Attribute and non-key attributes.
Key Attribute
Non-Key Attribute
Non-Key Attribute
Non-Key Attribute
Query 2 Attribute Code Data Object List Return all data objects
which are consistent
Attribute Value with the input
attributes specified.
Attribute Code Note that attribute
' codes and values
Attribute Value always appear as pairs.
Attribute Code
Attribute Value
Delete 3 Attribute Code NULL Delete all data objects
which are consistent
Attribute Value with the input
attributes specified.
Attribute Code Note that attribute
. codes and values
Attribute Value always appear as pairs.
Attribute Code
Attribute Value

A-30

Each data object has a set of attributes, where the first eight attributes are used by the R-
Tree index as the key and represent two points which specify a hyper-cube. Each point consists
of four 32-bit IEEE-formatted floating-point numbers representing a four-dimensional Euclidean
point denoted as the T-position, X-position, Y-position, and Z-position. Thus, the index key,
which consists of a “lower” and “upper” point, is eight 32-bit floating-point numbers.

The total number of attributes assigned to a data object is the sum of the key and non-key
attributes, where the number of non-key attributes for a given data object is determined by the
Object Type and is given in Table A.1. The Object Type used by the Insert command specifies
which of the three types of objects (Small, Medium, and Large) is being inserted by the operation.
Table A.1 gives the character/byte code and the number of non-key attributes for each data object

type

Data objects differ by the number of non-key attributes assigned to each. Each non-key
data attribute has an identical format which primarily consists of an 8-bit NULL-terminated
ASCII character sequence of maximum length 1024. Table A.1 gives the number of non-key
attributes assigned to each object type, and the database should be able to handle all three types of
data object, in any permutation. Note that the object type specification is placed at the beginning
of the Insert command as a convenience, since the number of attributes can be determined by
reading until the next carriage return, i.e., the end of the command.

The Delete and Query commands each reference a specified attribute by means of an

Attribute Code. Table A.3 gives the attribute code sequence for both the key and non-key
attributes. Also, each attribute is assigned a type and, if applicable, a name and units.

Table A.3: Attribute Codes and Descriptions

Attribute - Name - Type
Code ‘
0 T float |
Lower 1 X float
Point 2 Y float
Key 3 Z float
Attributes 4 T float
Upper 5 X float
Point 6 Y float
7 z float
8 property string
9 property string

A-31

Small

16 property string

17 property string

18 property string
Non-Key 19 property string
Attributes Medium

23 property string

24 property string

25 property string

26 property string

Large
49 property string
50 property string

The formal definition of each command input line is described in the specification and is
not repeated here except to note the idea of “wild card” values for missing key and non-key
attributes for both the Query and Delete commands. A wild card value will match any other
value when compared for a consistency check, i.e., a wild card value for the lower T hyper-point
will match any other value for the lower T hyper-point. The wild card values are implemented in
the two routines getQueryCommand and getDeleteCommand which are described in following
sections.

A.5.2 OQutput Specification

The only command which produces a response from the index is the Query command.
The output of the database are the responses to each Query operation.

The response to a Query operation consists of a set of data objects which are consistent
with the Query. Each data object in a response is represented as the list of its attributes in order
defined by Table A.3. The list of attributes is written to a 8-bit ASCII character file where each
attribute is space delimited and with each list carriage return delimited. The format is very
similar to the Insert operation format for the input data sets with the only difference being the
omission of the command code. The set of data objects returned by a Query must be placed in the
output file continuously, i.e., in adjacent lines, although the order of the set is not constrained.

A.5.3 Implementation

A complete function hierarchy for the Input & Output module is given in Figure A-29.
The two routines, openFiles and closeFiles, are meant to partially initialize and exit the module
respectively. Three files should be opened/closed by these routines: the input dataset file, the
output response file, and the metric file. The names of each file will be passed as command-line
parameters, with the default names being the standard input for the dataset file, standard output
for the output file, and standard error for the metric file. The input and output files contents and
formats are discussed in the previous sections. The metric file is also used to display/store the
metric information for an individual execution of the baseline source code. Input to the database
application is done by five routines. Four of the routines correspond directly with the command
type required by the DIS Benchmark Specification: Init, Insert, Query, and Delete. The fifth
routine reads the command code which specifies which command is being read.

openFiles

VoV

closeFiles o Input & Output

getNextCommandCode

getInitCommand

getlnsertCommand createDataObject

Data
Management

getQueryCommand

main

getDeleteCommand

outputQuery

flushOutputBuffer

VoV Vo V.V V.V VYV

outputMetricsData - calcMetricsData

Figure A-29: Input & Output Module Function Hierarchy

Each command has a specified command code (see Table A-2) which is always the first
parameter of the command. The action taken by the application will branch depending on which
command was read so a routine to read this code is implemented and is called
getNextCommandCode. The routine will only read the command code and will leave the input
stream pointer at a location where subsequent routines can read the rest of the command. If an
invalid code is read, the routine will attempt to “drop down” to the next command unti! a valid

A-33

code is reached. Also, the routine should return a specified condition to indicate that the end of
the input file has been reached which means the data set has been completely processed.

The Init command is read by the get/nitCommand routine. As mentioned previously, the
initialization command is different from the rest of the database commands since it appears first
and only once for each data set as well as its unique format. The get/nitCommand is called by
main as part of the application initialization.

The Insert command is read by the getInsertCommand routine which reads the entire
command from the input dataset and returns a data object which can be directly inserted into the
index. This is accomplished by allowing the routine to access the Database module routine
createDataObject. This means that any change to the database data object structure may cause
changes in the getlnsertCommand routine. This violates the idea of a module, but is allowed to
reduce the size of the baseline source code and complexity of the resulting benchmark
application.

The Query command is read by the getQueryCommand routine which reads the entire
command from the input and returns two search values ready for the query routine: an index key
and a non-key attribute list. Missing values in the command for both key and non-key values are
defaulted to wild-cards, i.e., will match with anything. Default wild-card values will be defined
and inserted into both search values inside the getQueryCommand routine. This could be done
outside of the routine at the main level or inside the query routine, but the “missing” value
specification is judged to be more of an input format rather than a database behavior for the
benchmark.

The Delete command is read by the getDeleteCommand routine which reads the entire
command from the input and returns two search values ready for the delete routine: an index key
and a non-key attribute list. The use of wild-card values and reasoning is identical for the
getDeleteCommand as for the getQueryCommand.

The final three routines of the Input & Output module handle the output of the
application. The first, outputQuery, places the query response into the output buffer, which does
not necessarily write the output to the screen or a file. Instead, another routine,
SflushOutputBuffer, is used to write the buffer to the screen/file. This is done to conform to the
benchmark specification when timing the Query command (see section A.6). The buffer will be
limited in size, so a condition may arise where the buffer would need to be flushed before its
usual placement in the execution loop (see Figure A-3). Although this will degrade the time of
the query which caused this premature flush, the condition is expected to be rare enough that the
overall metric statistics will be only slightly affected. The final routine, outputMetricsData,
displays the metrics data. The routine first calls the metrics module routine calcMetricsData
which calculates the separate metric data, averages, deviations, etc. This means that any change
to the metric structures may cause changes in the outputMetricsData routine.

A6 METRICS

The primary metric associated with the Data Management benchmark is total time for
accurate completion of a given input data set. A series of secondary metrics are the individual
times of the command operations: Insert, Delete, and Query. Best, worst, average, and standard
deviation times are to be reported for all operations.

The time for the Insert and Delete commands to complete is defined as the time difference
between the time immediately before the command is placed in the database input queue and the
time immediately before the next command is placed in the same input queue. This time
difference is essentially the rate at which each line of the input data set is read. The time for a
Query command to complete is defined as the time difference between the time immediately
before the command is placed in the input queue to the time immediately after the response is
placed in the output queue.

The Metrics module is intended to separate the timing issues from the rest of the application,
i.e., different system timing routines should only have to change the routines in the Metrics
module without effecting the Database module. The tasks required by the Metrics module fall
into four different categories. The first is an initialization step which should determine the
starting time of the application and set any needed flags or values for later timing calculations.
The second category is the “setting” of flags for repeated passes through loops and calculations,
i.e., some form of time marker would need to be set each time a command is processed. The third
category would be to update the values of the metric statistical data using the flags and time
markers set by the second category. The final category would be the calculation of the specific
metric values required by the benchmark. The reason that the third and fourth categories are
separated is for efficiency, since the third category of updating values could also calculate the
required metrics. However, the update category would need to be executed every time the second
or “setting” category was changed in order to keep accurate metric values. The extra calculations
would be “wasted” until the entire data set was completed.

g e R T

initMetricsData J

o i MRV ek S el T R e o

Data outputMetricsData ‘ calcMetricsData I
Management | '
main R
2 updateMetricsData
_:’ setMetricsData

Figure A-30: Metrics Module Function Hierarchy

The Metrics module implements four routines which correspond directly with the four
categories described above: initMetricsData, setMetricsData, updateMetricsData, and
calcMetricsData.

The implementation of the Metrics module involves a system request for the current time.
The ANSUVISO C standard library provides a routine, time, which returns the time with a
resolution of seconds. This fidelity may be accurate for the primary metric of total time required
to process the data set, but will probably not be sufficient for the individual command metrics.
Another routine, gettimeofday, is part of the BSD UNIX standard and returns the time with a
resolution of microseconds. This fidelity would yield the necessary accuracy, but storage of
intermediate times may become difficult since the gettimeofday routine returns a structure of two
longs and the metric statistical calculations will require time value arithmetic, i.e., subtraction,
multiplication, square root, etc. Also, the gettimeofday routine is not part of the ANSI/ISO C
standard. A compromise is made for the baseline application which consists of wrapping the

A-35

system timing routines in a timer routine called getTime which returns the current system time in
milliseconds since the program began execution. A preprocessor variable will be used to allow
the getTime routine to use either the ANSI/ISO C standard library routine time, or the BSD UNIX
gettimeofday routine. The getTime routine returns milliseconds from program start, to allow the
truncated gettimeofday return values to be stored in a single long integer. This does mean a loss
of fidelity when using the gettimeofday routine, but milliseconds should provide an accurate
enough measure for the metric calculations and the ease of implementation, a single long integer
rather than a structure of two long integers, outweighs the reduced fidelity. The values returned
by the time routine are “promoted” to milliseconds in the getTime routine without increasing the
accuracy of the measurements. Any changes to the timing routine and system level time calls,
should only affect the getTime function which should allow users to quickly and safely modify
the baseline source to their own systems.

A.7 REFERENCES

[AAEC-1] “Data-Intensive Systems Benchmark Suite,” MDA972-97-C 0025, Atlantic Aerospace
Electronics Corp., Waltham, MA 02451, Spring 1999.

[AAEC-2] “DIS Benchmark C Style Guide: C Style and Coding Standards for the DIS
Benchmark Suite,” MDA972-97-C 0025, Atlantic Aerospace Electronics Corp., Waltham, MA
02451, December 28, 1998.

[Guttman] Guttman, “R-Trees: A Dynamic Index Structure for Spatial Searching, ” Proc. ACM
SIGMOID, pp. 47-57, June 1984.

A8 PSEUDO-CODE

This part of the document lists the pseudo-code for the baseline application. The first
section contains the main routine, a listing of the command structures and variables, and support
routines used by the main and modules. The lower routines are listed under the appropriate
module sections and include a complete routine description, comments, pseudo-code, and brief
description of a unit test if applicable.

A9 COMMON TYPES AND STRUCTURES

typedef long int Int;
typedef float Float;
typedef char Char;
typedef unsigned char Uchar;
typedef long int Time;
typedef struct timeval Time;
/*

* Command type which includes a NONE for no commands left
*/
typedef enum

{
INIT = 0,
INSERT = 1,
QUERY = 2,

DELETE = 3,
NONE = 4,
INVALID = 5

} CommandType;

/*

* Data Object Types for determining number of non-key attributes
*/ .

typedef enum

{
SMALL = 1,
MEDIUM = 2,
LARGE = 3

} DataObjectType;

/*
* Data Object Attribute which uses union to handle both
* key and non-key wvalues
*/ :

typedef struct

{

union {
Float key;
Char *nonKey;
} value;

} DataObjectAttribute;

* Data Attribute. A subclass of DataObjectAttribute which adds
* an attribute code to the object attribute structure. The
* gtructure is used by the query and delete commands for key and
* non-key searches. BAny code value between MIN ATTRIBUTE_CODE
* and NUM_OF_ KEY_ATTRIBUTES represent a key value, i.e., Float.
* Any code value between NUM_OF_KEY ATTRIBUTES + 1 and
* MAX ATTRIBUTE_CODE represents a non- key value, i.e., Char *.
*
/

typedef struct

{

Int code; /* code for attribute
*/
DataobjectAttrlbute attribute; /* attribute for code
*/
} Dataattribute;
/*
* Data Object
* _ basic storage unit of database which is referenced by R-
* Tree index.
* - contains key and non-key attributes in an array
* - number of attributes is determined by DataObjectType
* specifier
*/
typedef struct
{
DataObjectType type; /* type of object */
DataObjectAttribute *attribute; /* attribute array */

} DataObject;

/*

* Index Node
*/

typedef struct

{

Int level; /* level of tree where */
/* node resides */
List entries; /* list of data entries */
/* for this node */
} IndexNode;
/*
* Index point structure
*/
typedef struct
{
Float T;
Float X;
Float Y;
Float Z;

} IndexPoint;

/*
* Index key structure - defines a hyper-cube from two points
*/

typedef struct

{

IndexPoint lower; /* lower point of hyper-cube */
IndexPoint upper; - /* upper point of hyper-cube */
} IndexKey;
/*
* Index Entry
*/

typedef struct

{

/* pointer to child which is either */
/* 1) Another node in index */
/* 2) Data object which is stored */
union {

IndexNode *node;
DataObject *dataObject;
} child;
IndexKey key; /* index key for the entry */
} IndexEntry;

/*
* Command metric structure for timing statistics
*/
typedef struct
/*
* The four following members are for internal use and
* gshould never be accessed outside of the metrics
routines.

A-38

*/

Time lastTimeMark;
Int ‘ nﬁmOfCommands}
Time _sum;

Time sumSquares;

/*
/*
./*
/*
I*
/*
/*
/*

time mark for command */
time duration calc */
number of commands */

(for avg) ., Cox/

sum of the individual */
command times */
sum of the squares of */
the individual times */

* The four following members are for external use and

*/
Time - worst;
Time ‘f~best;
Time o avg;
Time deviation;

} CommandMetric;

/*

* Metric structure

*/

typedef struct

{

/>
I
/*
t/*
/*

- /*
/*

* represent the metric results for this command.

worst time recorded */
for this command */

best time recorded for */
this command */

average time for this */
command */: .

standard dev1atlon for */
this command */

/*

* Metric Times

*/
Time totalTime; /* total time to complete data set */
Time inputTime; /* total time for input of data set */

Time outputTime; /* total tlme for output of querles */

/*
*/

CommandMetric 1nsertCommandMetr1c,
CommandMetric queryCommandMetrlc,
CommandMetric deleteCommandMetric;

/*

* Individual Command Metrics -

/* insert metric */
/* query metric . */
/* delete metric * [

+ The time for a command to complete is a complete “loop”

- * through the command process, i.e.

"% to index, output if any, etc.
* flag or value must be set each time through the loop,

via

reading, application
To do this properly, a

* the setMetricsData routine which will be used by the
* ypdateMetricsData routine to update the proper

* CommandMetrlc structure.

*/ .

CommandType 1astCommand /*
. /*
/*

} Metric;

/*
* Non-Key Attribute Parameters

A-39

command used for */
determining which command */
metric to update */

*/

#define MAX_SIZE OF ATTRIBUTE 1024;
#define NUM_OF_SMALL ATTRIBUTE 18;
#define NUM_OF MEDIUM ATTRIBUTE 25;
#define NUM_OF LARGE ATTRIBUTE 51;
#define NUM_OF KEY ATTRIBUTES 8;
#define MIN_ATTRIBUTE_CODE 0;
#define MAX_ATTRIBUTE_ CODE 50;
enum {

LOWER_POINT T
LOWER_POINT X
LOWER_POINT Y
LOWER_POINT Z
UPPER_POINT T
UPPER_POINT X
UPPER_POINT_Y
UPPER_POINT 2 =

~

[}
-

-

~ o~

-

[}
N WD RO

-

}i

/*
* Wild-Card Values
* (min‘s and max’s determined by IEEE 754 Spec)

*/) .
#define MINIMUM_VALUE_OF_ FLOAT -3.40282347e38;
#define MAXIMUM_VALUE_OF FLOAT 3.40282347e38;
#define MINIMUM VALUE_OF_INT -2145483647;
#define MAXIMUM_VALUE_OF INT 2145483647;
/ *

* Index (R-Tree) Parameters

*/
#define MINIMUM_FAN SIZE 2
A.10 MAIN
Name: main
Input: input file name (option w/default being stdin)
Output: database response output file (option w/default being stdout)

metrics output file (option w/default being stderr)
Description: Main routine which handles initialization of modules, and interface

between the I/O, Database, and Metrics.
Calls: openFiles()

closeFiles()

getInitCommand()

getInsertCommand()

getQueryCommand()

getDeleteCommand()

getNextCommandCode()

outputQuery()

outputMetricsData()

createIndexNode()

A-40

deleteIndexNode()
insert()

query()

delete()
initMetricsData()
updateMetricsData()
setMetricsData()
errorMessage()
System:

Get command-line integer, argc
Get command-line arguments, argv

Define
Define
Define
Define
Define
Define
Define
Define
Define
/*

* Set

*/

Set inputFile
Set outputFile
Set metricFile

/*

Metric struct, metrics &
FILE pointer, *inputFile
FILE pointer, *outputFile
FILE pointer, *metricFile
index node pointer, *root
Time, lastTimeMark
integer, code

integer, fan

integer, error

defaults for input, output,
stdin

stdout .
stderr

non.

* Parse command-line arguments

*/

If argc > 1 Then

EndIf

* X X X ¥ * F

/*

*

A
/*
/*
/*.
/*
/*
/*
/*
/*
/*

and

* dis_datamanagement -v

* -i. inputFileName
* -0 outputFileName

ok -m metricFileName
*/

of line arguments
command-line arguments
timing metric

input file pointer
output file pointer
metric file pointer
root node pointer
timing variable
database command

fan for index

error flag for routines

metric files

Begin Initialization of Database Application

* Initialize Metrics

*/

Call initMetricsData(metrics)

/*

* Initialize I/O

A-41

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/)
Call error = openFiles(inputFile, outputFile, metricFile)
If error != OPEN_FILES_SUCCESS Then

/*
* FATAL: can’'t proceed if unable to open files
*/
Return ERROR
EndIf
/*

* Tnitialize Database by creating the first root node and getting
* the specified fan from the input file.

*/

Call root = createIndexNode(LEAF)

If root == NULL Then

/*
* FATAL: can’'t proceed if unable to create root node
*/ : :
Return ERROR
EndIf
/*

* Get command code of first command in file. This command MUST
* be an INIT command as specified by the DIS Benchmark
* Specification. Any command other than INIT will result in a
* termination of the application.
*x/
Call error = getNextCommandCode(inputFile, code)
If error == GET_NEXT_COMMAND CODE_SUCCESS && code == INIT Then
/*
* Read INIT command to get the fan of the index
*/
Call error = getInitCommand(inputFile, fan)
If error == GET_INIT IO_ERROR ||
error == GET_INIT_EARLY_ EOF_OR_EOL_ ERROR Il
erroxr == GET_INIT_INVALID_FAN Then
/*
* FATAL: can’'t proceed without a valid init command
*/
Return ERROR
EndIf
Else If error == GET_NEXT_ COMMAND CODE_IO_ERROR Then
/*
* FATAL: can’t proceed if unable to read code for
* initialization command
*/
Return ERROR
Else If code != INIT Then
/*
* FATAL: can’t proceed if first command is not INIT
*/
Return ERROR
EndIf

A-42

* Begin Main Body of Database Application

*

*/

/*

* Process commands in inputFile until done

*/
Call error = getNextCommandCode (inputFile, code)
If error == GET_NEXT_COMMAND_CODE_SUCCESS Then

/*
* Empty
*/ _
Else If error == GET_NEXT_COMMAND_IO_ERROR Then
/*
* FATAL: low-level I/O error reading next command code
*/ .
Return ERROR) ‘
EndIf
Loop while code != NONE Then
/*
* Insert
*/
If code == INSERT Then
/*
* Read insert command
*/

Define data object, dataObject
Call error = getInsertCommand(inputFile, dataObject
)
If error == GET_INSERT_SUCCESS Then
/*
* Pags entry to index for insertion
*/
Call error = insert(root, dataObject, £fan)
If error == INSERT_SUCCESS Then
/*
* Empty
*/
Else If error == INSERT INSERT ENTRY_ FATAL Then
/*
* FATAL: the index has changed and an
* error occurred during the inserting of
* an entry.
*/
Return ERROR
Else If error == INSERT_ INSERT ENTRY NON_FATAL
Then
/*
* NON FATAL: the index has not changed
* and an error has occurred. The current
* jmplementation notifies the user of
the
* insert failure and attempts to
proceed.

*/

A-43

Else If error == INSERT ALLOCATION_FAILURE Then
/* ‘
* FATAL: the index has changed and there
* was no more memory to grow the tree.
*/
Return ERROR
EndIf
Else If error == GET_INSERT IO_ERROR Then
/*
* FATAL: low-level I/O error occurred during
* read. No recovery. :
*/
Return ERROCR
Else If error == GET_INSERT EARLY EOF_OR_EOL_ERROR

Then
/*
*
*/
Else If error == GET_INSERT UNKNOWN DATA_ OBJECT TYPE
Then
/*
*
x/
Else If error == GET_INSERT_ALLOCATION_ERROR Then
/* /
*
*/
EndIf
/*
* Query
*/
Else If code == QUERY Then
Define index entry list, solutionSet
Define index key, searchKey
Define non-key list, searchNonKey
/*
* Get Query command from input
*/
Call error = getQueryCommand(inputFile, searchKey,
searchNonKey)
If error == GET_QUERY_ SUCCESS Then
/*

* Pass searchRey and searchNonKey to index to
* find solutionSet via a query
*/ ’
Call error = query(root, searchKey,
searchNonKey, solutionSet)
If error == QUERY_SUCCESS Then
/*
* Query command gives an output solution
* get which is placed in the output
* buffer for later flushing.
*/

A-44

Call outputQuery(solutionSet)
Else If error == QUERY_INVALID_KEY_ SEARCH_VALUE

Then
/*

*

The key value used for search is
invalid, i.e., bounds on lower-upper
cube are reversed, etc. <Current
implementation warns user and
continues.

* % % ¥

*/
Else If error ==
'QUERY_INVALID_NON_KEY_ ATTRIBUTE_CODE Then
* R .
* One of the non-key attribute values
* (character string) is invalid, i.e.,

is
* empty (NULL) . Current implementation
* warns user and continues.
*/ .
EndIf ,
Else If error == GET_QUERY_IO_ERROR Then
/* o

* FATAL: low-level I/0 error occurred during
* read. No recovery.
*/
Return ERROR R
Else If error ==GET_QUERY_EARLY_EOF_OR_EOL ERROR Then

/*
*
*/
Else If error == GET_QUERY_INVALID_CODE_ERROR Then
/* :
*
*/
Elgse If error == GET_QUERY_ALLOCATION_ERROR Then
/*
*
*/
EndIf
/*
* Delete
*/)
Else If code == DELETE Then
Define index key, gsearchKey
Define non-key list, searchNonKey
/* .
* Get Delete command from input
*/

Call error = getDeleteCommand(inputFile, searchKey,
searchNonKey)
If error == GET_DELETE_SUCCESS Then

/*

* Pass searchKey and searchNonKey to index to

A-45

* delete data objects which intersect with the
* gearch values.
* /)
Call error = delete(root, searchKey,
‘searchNonKey, fan)
If error == DELETE_SUCCESS Then
/ *
* Delete command does not give output.
*/
Else If error ==
DELETE_INVALID_KEY_ SEARCH VALUE Then
/ %*
* The key value used for search is
* invalid, i.e., bounds on lower-upper
* cube are reversed, etc. Current
* implementation warns user and
* continues. ‘
*/
Else If error ==
DELETE_INVALID NON_KEY ATTRIBUTE_CODE Then
/* ~
* One of the non-key attribute values
* (character string) is invalid, i.e.,
is
* empty (NULL). Current implementation
* warns user and continues.
*/
EndIf
Else If error == GET_DELETE_IO_ERROR Then
/ *
* FATAL: low-level I/0 error occurred during
* read. No recovery.
*/
Return ERROR
Else If error ==GET_DELETE_EARLY EOF_OR_EOL_ERROR

Then
/*
*
*/
Else If error == GET DELETE_INVALID_CODE_ERROR Then
/*
*
*/
Else If error == GET_DELETE_ALLOCATION_ERROR Then
/*
*
*/
EndIf
/*
* Unknown or NONE command code read
*/ .
Else

error handler (WARNING: Unknown or invalid cémmand
type read)

A-46

EndIf
/* | -
* Get the next command code for next command processing
*/ : . o
Call error = getNextCommand (inputFile, command)
If error == GET_NEXT COMMAND_CODE_SUCCESS Then

/*
* Next command ready-to-go
*/ . ..
Else If error == GET_NEXT_COMMAND_CODE_IO_ERROR Then -
/* ‘ ’ -
* FATAL: low-level I/0 error reading next command
Ny : S e
Return ERROR
EndIf
EndLoop
/*
* Exit Database
*/

Call deleteIndexNode(root)

*

* Exit Metrics - via the outputMetricsData routine
* / .

Call error = outputMetricsData(metricFile, metrics)
If error == OUTPUT_METRIC_SUCCESS Then

/* :
* Empty
*/ ,
Else If error == OUTPUT_METRIC_SUCCESS Then
/*

* Failure during writing of metrics. At the end of
* application, so do nothing.
*/

EndIf

/*
* Exit I/O
*/

Call closeFiles(inputFile, outputFile, metricFile)
/*
* Done

*/
Return SUCCESS

A.11 DATABASE

A.11.1 chooseEntry

Name: chooseEntry
Input: node with list of entries to choose from, node

A-47

/*

*/

entry trying to choose with, entry

Output: entry within node which minimizes penalty, minPenaltyEntry

Return: index entry, NULL if node is empty

Description: Determines which entry of input node to add new entry. Chosen entry
provides minimum penalty which is the increase of the total hyper-cube
volume. The only error possible is if the node provided to choose from is
empty.

Calls: errorMessage()
penalty()
System:

Get index node, node /* node to choose from */

Get index entry ptr, entry /* entry to choose with */

* Find entry of node which has the lowest penalty
* for adding entry .

If node.entries == EMPTY Then

Call errorMessage (WARNING: empty node)
Set minPenaltyEntry = NULL

Else
/ *
* Find entry of node which has the lowest penalty for
* adding entry
*/
Define index entry minPenaltyEntry
Define Float minPenalty
Set minPenaltyEntry to first entry of node.entries
Set minPenalty = penalty(minPenaltyEntry, entry)
Loop for each entry tempEntry of node excluding first entry
Define float tempPenalty
Set tempPenalty = penalty(tempEntry, entry)
If tempPenalty < minPenalty Then
Set minPenaltyEntry = tempEntry
Set minPenalty = tempPenalty
EndIf
EndLoop
EndIf
/ *
* Done
*/
Return minPenaltyEntry
Test:
A.11.2 consistentKey
Name: consistentKey
Input: index key, A
index key, B
Output: flag indicating intersection
Return: integer, TRUE or FALSE
Description: Returns Boolean value indicating if the two input index keys intersect.

A-48

Calls:

System:
/*
* Consistent check for key attributes
*
Iné /* return value either TRUE or FALSE */
consistentKey (. :
IndexKey a, /* first index key ~ */
IndexKey B - /* second index key */
)
{
/*
* Check T bounds
*/ .
if (A.lower.T > B.upper.T |]
B.lower.T > A.upper.T
{ return (FALSE);
}
/*
* Check X bounds
*/ ,
if (A.lower.X > B.upper.X ||
B.lower.X > A.upper.X)
{ return (FALSE };
} ;
/*
* Check Y bounds
*/
if (A.lower.Y > B.upper.Y ||
B.lower.Y > A.upper.Y)
{ return (FALSE);
}
/*
* Check Z bounds
*/
if (A.lower.Z > B.upper.Z ||
B.lower.Z > A.upper.Z)
{ return (FALSE);
}
/*
* Passed all bounds test
*/
return (TRUE);
}
[Test:

A-49

A.11.3 consistentNonKey

Name: consistentNonKey
Input: character string, A
character string, B
Output: integer, TRUE or FALSE
Return: Boolean value flag
Description: Searches for string B in string A returning TRUE if A contains B and
FALSE otherwise.
Calls:
System: strchr()
/ *
* Consistent check for non-key attributes
* .
Iné ’ /* return value either TRUE or FALSE o */
consistentNonKey (
Char *A, /* first non-key value */
Char *B /* second non-key value) */
) ;
{
/ *
* Use standard library function for sub-string comparison
*
if/ (::strchr(A, B) == NULL)
{ return (FALSE);
}
/ *
* Passed test
*/
return (TRUE);
}
|Test:

A.11.4 createDataObject

Name:
Input:
Output:
Return:

Description:

createDataObject

DataObjectType, type

data object created, dataObject

DataObject pointer, or

NULL (if allocation failed)

Routine creates data object of specified type by allocating appropriate
amount of memory for number of non-key attributes. Note that memory is
not allocated for the individual non-key character strings since their
specific size is not known before hand. The values for the data object are
also filled with default values which produces an index key of maximum
possible volume and sets each non-key character string to NULL.

A-50

Calls: errorMessage()
System: malloc()

Get DataObjectType, type /* type of data object to create */

Define DataObject pointer, dataObject /* data object to create */

/*

* Create data object
*/

Set dataObject = new DataObject

If dataObject == NULL Then :
call errorMessage(can’'t create new data object)

Else
/*

* get default index key values
*/ . .

Set dataObject.key.lower.T
Set dataObject.key.lower.X
Set dataObject.key.lower.Y
Set dataObject.key.lower:.2
Set dataObject.key.upper.T
Set dataObject.key.upper.X
Set dataObject.key.upper.Y
Set dataObject.key.upper.Z

MINIMUM_VALUE_OF_FLOAT
MINIMUM VALUE_OF_FLOAT
MINIMUM_VALUE_OF_FLOAT
MINIMUM_VALUE_OF_ FLOAT
MAXIMUM_VALUE_OF_ FLOAT
MAXIMUM_VALUE_OF_FLOAT
MAXIMUM_VALUE_OF_ FLOAT
MAXIMUM VALUE_OF_FLOAT

]

[

/ *
* Allocate non-key attribute array
*/
If type == SMALL Then
Set dataObject.type = SMALL
Set dataObject.attributes = new Char * [
NUM_OF_SMALL_ATTRIBUTE]

/*
* Check
*/
If dataObject.attributes == NULL Then
Call errorMessage(can’t create non-key
attribute array for new data object)
Delete dataObject
Set dataObject = NULL
Else
/*
* Set default non-key values
*
/
Loop for i = 0 to NUM _OF SMALL_ATTRIBUTE - 1
Set dataObject.attributes[i] = NULL
EndLoop
EndIf

Else type == MEDIUM Then
Set dataObject.type = MEDIUM

Set dataObject.attributes = new Char * [
NUM_OF_MEDIUM_ATTRIBUTE]
/*
* Check
*/
If dataObject.attributes == NULL Then

A-51

Call errorMessage({ can’t create non-key
attribute:array for new data object)

Delete dataObject

Set dataObject = NULL

Else
/* |
* Set default non-key values
*
/ .
Loop for i = 0 to NUM_OF_MEDIUM_ATTRIBUTE - 1
Set dataObject.attributes[i] = NULL
EndLoop
EndIf

Else If type == LARGE Then
Set dataObject.type = LARGE

Set dataObject.attributes = new Char * [

NUM_OF_LARGE_ATTRIBUTE]

/* : ‘

* Check

& / ; .

If dataObject.attributes == NULL Then
Call errorMessage(can’'t create non-key

attribute array for new data object)

Delete dataObject

Set dataObject = NULL

Else
/* o
* Set default non-key values
*
/
Loop for i = 0 to NUM_OF_LARGE ATTRIBUTE - 1
Set dataObject.attributes([i] = NULL
EndLoop
EndIf
Else)
Call errorMessage{ invalid object type to create)
Delete dataObject
Set dataObject = NULL
EndIf
EndIf
/*
* Done
*/
Return dataObject
Test:

A.11.5 createIndexEntry

Name: createIndexEntry

Input: none

Output: new index entry, entry

Return: IndexEntry pointer, or
NULL (if allocation failed)

A-52

Description: Routine creates a new index entry using system allocation routine.
Returns pointer to new entry or NULL if allocation failed. The values for
the child reference is set to NULL for later assignment and the index entry
is set to the largest possible volume.

Calls: errorMessage()

System: malloc()
Define index entry pointer, entry /* pointer to index entry */
/* :
* DAllocate memory
* / .
Set entry = new IndexEntry
If ent == NULL Then :
Call errorMessage(Allocatlon failure in creating new index
entry)
Else
Set entry.child - = NULL
Set entry.key.lower.T = MINIMUM_VALUE_| OF FLOAT
Set entry.key.lower.X = MINIMUM_VALUE_OF_FLOAT
Set entry.key.lower.Y = MINIMUM_VALUE OF_ FLOAT
Set entry.key.lower.Z = MINIMUM_VALUE_OF_ FLOAT
Set entry.key.upper.T = MAXIMUM_VALUE_ OF_FLOAT
Set entry.key.upper.X = = MAXIMUM VALUE_OF_FLOAT
Set entry.key.upper.Y = MAXIMUM_VALUE_OF _FLOAT
Set entry.key.upper.Z = MAXIMUM_VALUE_OF_ " FLOAT
EndIf :
/ +*
* Done
*/
Return entry
Test:

A.11.6 createIndexNode

Name: createIndexNode

Input: integer level, level

Output: new index node, node

Return: IndexNode pointer, or
NULL (if allocation failed)

Description: Routine creates new node using system allocation routine. Returns pointer
to new node or NULL if allocation failed. The level of the new node is
input and stored in new node and the list of index entries is specified as
empty.

Calls: errorMessage()

System: malloc()
Get integer, level) /* level of new node */

/*

Define index node pointer, node /* pointer to new node */

* Check for invalid node level

*/

If level < 0 Then

A-53

Call errorMessage(Invalid level specified for new node)
Set node = NULL

Else
Set node = new IndexNode
If node == NULL Then :
Call errorMessage(Allocation failure in creating new
node) :
Else '
Set node.level = level
EndIf
EndIf
/ *
* Set entries to empty
*/ :
Set root.entries = EMPTY
/* :
* Done
*/
Return node
Test:
A.11.7 delete
Name: delete
Input: index root node, root

search index key, searchKey
search non-key values, searchNonKeys
Output: updated index node, root
Return: DELETE_SUCCESS, or
DELETE_INVALID KEY SEARCH_VALUE,
DELETE_INVALID_NON KEY SEARCH VALUE,

Description:

Calls: deleteEntry()
validKey()
validNonKey()

Get index node, root
Get index key, searchKey
Get list of non-key values, searchNonKeys
Define boolean , adjustmentFlag
/*
* Check key and non-key search values for validity if requested
*
/
If validKey(searchRey) == FALSE Then
Call errorMessage(Invalid index key for DELETE)
Return DELETE INVALID KEY SEARCH VALUE
Else If validNonKey(searchNonKeys) == FALSE Then
Call errorMessage{ Invalid non-key list for DELETE)
Return DELETE_INVALID NON_KEY ATTRIBUTE_ CODE
EndIf ‘ '

/*

* Call deleteEntry routine for root node which will recursively

A-54

* process the entire index. Note that the adjustmentFlag is
* passed to deleteEntry but it not needed for the root node since
* adjustments would be made to the parent which the root does not
* have.
*/
Call deleteEntry(root, searchKey, searchNonKeys, adjustmentFlag
) :
/* ‘ .
* The final check is made to insure that the root node has more
* than one child unless it is a leaf node.
*/
If root.level != LEAF Then
Loop while number of entries on root <= 1
Set root = root.entries.child.node
EndLoop
EndIf
/*
* Done
*/
Return DELETE SUCCESS

| Test:

A.11.8 deleteDataObject

Name: deleteDataObject

Input: data object to delete, dataObject

Output: none

Return: void

Description: Routine deletes given data object including all non-key character
sequences.

Calls:
System: free()

Get DataObject, dataObject /* data object to delete */

/ *

* Delete the data object’s non-key attribute values
* Number of values is based on object type
*
/
If dataObject.type == SMALL Then
Loop for i = 0 to SMALL - 1
If dataObject.attributes[NUMBER_OF_KEY ATTRIBUTES +
i] t= NULL Then
Delete dataObject.attributes!|
NUMBER_OF_KEY_ATTRIBUTES + i]
EndIf
EndLoop
Else If dataObject.type == MEDIUM Then
Loop for i = 0 to MEDIUM - 1
If dataObject.attributes[NUMBER_OF_KEY_ ATTRIBUTES +
i] != NULL Then
Delete dataObject.attributes|
NUMBER_OF_KEY_ATTRIBUTES + i]
EndIf
EndLoop

A-55

Else

EndIf
/*

Loop for i = 0 to LARGE - 1
If dataObject.attributes|[NUMBER_OF_KEY ATTRIBUTES +
i] != NULL Then
Delete dataObject.attributes]|
NUMBER_OF_KEY_ATTRIBUTES + i]
EndIf
EndLoop

* Delete data object attributes array

*/
/*

Delete dataObject.attributés

* Delete data object

*/

Delete dataObject

/*
* Done
*/

Return

Test:

A.11.9 deleteEntry

Name:
Input:

Output:
Return:

Description:

deleteEntry

index node, node

search index key, searchKey

search non-key values, searchNonKeys

boolean key adjustment flag, adjustmentFlag

updated index node, node

void

The routine is a recursive call to traverse the current index and delete all
consistent data objects. The routine will also check for empty nodes and
removes them as the index is traversed. The routine will treat leaf and
non-leaf nodes differently. Non-leaf nodes have entries which reference
other nodes. For each entry in a non-leaf node, the routine is recursive
called on that entry. The recursive call will eventually descend to a leaf
node. Upon return from the recursive call, the index branch referenced by
the entry is in one of three states:

(1) No data objects, entries, or nodes were removed in the branch. The
branch is unaltered and no ajdustment to “upper” portions of the index is
necessary.

(2) One or more data objects, entries, or nodes were removed in the
branch. The branch is altered and the index key value for the parent of the
current node needs adjustment. However, the node referenced by the

branch, i.e., index entry, is NOT empty, and should not be removed. This
means that the current entry is left intact, only its key is adjusted.

(3) One or more data objects, entries, or nodes were removed in the branch
and the node referenced by the entry is now empty. The branch has been
altered and the node, since its empty, should be removed along with the
entry which references it.

When the current node is a leaf node, the data object each entry of the

node references is checked for consistency with the input key and non-key

search values and removed, along with the entry which references it, if

appropriate. A flag is then set which tells the parent, i.e., the calling

routine, that the node has been altered and a key adjustment is required.
Calls: consistentKey()

consistentNonKey()

deleteEntry()

keysUnion()

Get index node, node

Get index key, searchKey

Get list of non-key values, searchNonKeys
Get boolean , adjustmentFlag

/*
* Set key adjustment flag to FALSE until adjustment is necessary
* through a delete or return flag. ‘

*
Seé adjustmentFlag = FALSE
*
/* Treat leaf and non-leaf nodes differently.
* . :
If/node.level > LEAF Then
*
/* Current node isn’t a leaf node, so descend branches
until

* leaf. While descending, check input search index key
* values only, since each entry will reference a node and
* not a data object. :

*/
Loop for each entry tempEntry of node
If consistentKey(tempEntry.key, searchRey) == TRUE
Then
/*

* Recursively call deleteEntry for child entry
* of current node
*/

Call deleteEntry(tempEntry.child.node,
searchKey, searchNonKeys,
tempAdjustmentFlag)

/*

* After return from recursive deleteEntry
call,
* the index beneath this node is in one of

* three states: (1) No entries of

A-57

* tempEntry.child.node were removed, thus no

* key ajdustment is required, (2) some entries

* of the tempEntry.child.node were removed,
but

* some are left so need key adjustment, and
(3)

* all entries of the tempEntry.child.node were

* removed, so no key adjustment {(adjust

* what?!?) and remove the entry (which also

* removes the node).

*
/
If tempEntry.child.node.entries == EMPTY Then
/*
* Remove the entry from the current
node,
* gince the node it references is empty
* and no longer required. Note that
* removing the entry should also remove
* whatever it references, i.e., typical
* index tree behavior.
*/ ;

Delete tempEntry removing it from node
Set adjustmentFlag = TRUE
Else If tempAdjustmentFlag == TRUE Then
/*
* One or more entries of the child node
* was removed so a key adjustment of the
* current entry is required.
*
/
Call tempEntry.key = keysUnion(
tempEntry.child.node.entries)
Set adjustmentFlag = TRUE
EndIf
EndIf
EndLoop
Else
/*
* Current node is a leaf node so each entry references a
* data object. Check input search key and non-key values
* and remove all consistent data objects, setting
* adjustment flag if removal occurs.

*/
Loop for each entry tempEntry of node
/*
* Compare search key and stored data object key
*/
If consistentKey(tempEntry.key, searchKey) == TRUE

Then
* .
* Set an upper bound for checking stored
* attributes to prevent out-of-bounds errors
*/
Define integer upperBound = 0
If tempEntry.child.dataObject.type == SMALL
Then
Set upperBound = SIZE_OF_SMALL_ ATTRIBUTE

Else If tempEntry.child.dataObject.type ==
MEDIUM Then : ‘ : ;
Set upperBound = SIZE_OF_MEDIUM_ATTRIBUTE
Else If tempEntry.child.dataObject.type ==

LARGE Then .
Set upperBound = SIZE_OF_LARGE_ATTRIBUTE
EndIf ‘
/*
* Check all non-key search values until done
or :

* until non consistent value found
*
Define boolean acceptanceFlag = TRUE
Loop for each DataAttribute nonKey in
searchNonKeys and while acceptanceFlag ==
TRUE '
/ * o :
* only check search attributes which are
* ‘relevant to data object
* / E . .
If nonKey.code < upperBound Then
[|
"% Set acceptanceFlag to result of
* consistency check
*/ ‘ S
Define integer "attributelIndex =
nonkKey.code -)
NUM_OF_KEY_ ATTRIBUTES
Set acceptanceFlag =
consistentNonKey (
nonKey.value,
tempEntry.attributes]|
attributeIndex])
EndIf ~
EndLoop
/ * . .
* If no non-key search values were
* inconsistent, delete the data object and
* index entry which references it. Also, set
* ajdustment flag to tell calling process,
* i.e., parent node, to adjust its key.
*
/
If acceptanceFlag == TRUE Then
Delete tempEntry removing from node
Set adjustmentFlag = TRUE

EndIf
EndIf
EndLoop

EndIf

/*

* Done

*/
Return DELETE ENTRY SUCCESS
Test:

A-59

A.11.10 deleteIndexEntry

Name: deleteIndexEntry

Input: index entry to delete, entry
level where entry resides, level

Output: none

Return: void

Description: Routine deletes input index entry by telling child, an index node or data
object, to delete itself.

Calls: deleteDataObject()
deleteIndexNode()
errorMessage()
System: free()
Get index node, entry /* index entry to delete */
/* ’
* Delete the entry’s child
*/
If level > LEAF Then
/* | -
* Entry’s child is an- index node
*/

Call deleteIndexNode(entry.child.node)
Else If level == LEAF Then

/*
* Entry’'s child is a data object
*/
Call deleteDataObject(entry.child.dataObject)
Else
/*
* Don'’t know what entry’s child is, because the level is
* negative which is undefined.
*/ .
Call errorMessage(“WARNING: unknown level specified for
entry deletion, possible memory leak)
EndIf
/*
* Delete the entry
*/
Delete entry
/*
~* Done
*/
Return
Test:

A.11.11 deleteIndexNode

Name: deleteIndexNode
Input: node to delete, node

A-60

Output: none

Return: void

Description: Routine deletes input node. Recursively descends all children of node to
allow deletion of branches.

Calls: deleteIndexEntry()
System: free()
Get index node, node /* node to delete */
/* Ny
* Delete the index entries which reside on node
*/

Loop for each entry, entry, in node.entries
*

* Delete the entry
*/
Call deleteIndexEntry(node.level, entry)
EndLoop .
/*
* Delete the node
*/
Delete node
/*
* Done
*/

Return

[Test:

A.11.12 insert

Name: insert

Input: index (root node), root
new index entry, entry
integer fan value, fan

Output: Updated index, root

Return: INSERT_SUCCESS, or
INSERT INSERT _ENTRY_FAILURE_FATAL
INSERT INSERT_ENTRY_FAILURE_NON_FATAL
INSERT ALLOCATION_FAILURE

Description: Place data object into the index with specified fan returning the index via
the root node. The insert method descends the tree until the specified level
is reached. Note that the leaf level is zero and the level increases as the
tree ascends, i.e., the root level is always greater than or equal to the leaf
level. The branch or node chosen for descent is determined by comparing
the penalty for all possible branches and the new entry. The branch which
has the smallest or minimum penalty is chosen. Once the specified level is
reached, a node is chosen on that level which yields the minimum penalty
and the entry is placed on that node. Placement of the entry onto the node
may exceed the specified fan which causes the node to split. The node
split separates the union of the old entries of the node and the new entry

A-61

into two groups. One group is placed back onto the old node, and the
other group is placed on a new node created for that purpose. The new
node is then placed onto the parent of the old node. The may cause the
parent to split and an identical splitting process is carried out on the
parent, which may cause its parent to split, etc. This splitting may ascend
to the root node, which by definition has no parent and so is a special case.
When the root node is split, a new root is created which “grows” the tree.
The old root and the node split off of the old root are then placed onto the
new root, and the new root is returned as the updated index.

The insert routine creates a new entry for the data object. Then, the
routine places the new entry into the index using the insertEntry
subroutine using the input root node as the start of the tree descent. If the
root was split, the tree “grows” by creating a new root and placing the old
root and the split entry onto the new root and returning the new root as the
updated index. The primary difference between insert and insertEntry is
that insert is used for the special case of the root node splitting while
insertEntry is for every other node all of which have parents for split entry
placements. A modified insertEntry which checks for root splitting is
possible and would have the advantage of eliminating an “extra”
subroutine since there would be no need for insert. However, the insert
routine is used for this implementation because the modified insertEntry
would check each node for root splitting, which isn’t necessary, and the
additional clarity of placing the special case of root splitting into a
separate routine

Calls: createIndexEntry()

errorMessage()

insertEntry()

keysUnion()
Get index node ptr, root /* root node of index */
Get data object ptr, dataObject /* new object to place =*/
Get integer fan, fan /* fan of index tree */
Define index entry ptr, entry /* entry of new object */
Define index entry ptr, splitEntry /* entry after split */

Assert that 0 < fan < MINIMUM_FAN SIZE

/*

* Create index entry. Set child of entry to reference new data
* object and set index key of entry to appropriate values of data

* object.

*/

Call entry = createIndexEntry(LEAF)
If entry == NULL Then

EndIf

/*

* Couldn’t allocate memory for new index entry for new
data

* object.

*/
Return INSERT_ALLOCATION_FAILURE

A-62

Set entry.child.dataObject = dataObject
Set entry.key = dataObject key values
/*

* Place new entry on root node, splitting if necessary.

*/)]
Call error = insertEntry(root, entry, LEAF, fan, splitEntry)
If error == INSERT_ENTRY_SUCCESS Then :

/* o 4

* Check for split and grow tree if necessary. If a split
* occurred, then the root node was split. Since the root
* node has no parent, a split root node requires that a

new L ;
* root be created and the tree to grow.
*/ . R
If splitEntry != NULL Then
/* ‘ '
* Need new root, i.e., grow the tree
*/ i . ' :

Define index node, newRoot ; ;
Call newRoot = createIndexNode(root.level + 1)
/* :
* Couldn’t allocate new root node. This is a fatal
* error since a child node was split and the index
* altered.’ Because the current implementation does
* not employ an “undo” command, the result is a
fatal -
* error since the current state of the index is not
* known.
*/
If newRoot == NULL Then ;
Ccall errorMessage(allocation failure ')
Return INSERT_ALLOCATION_FAILURE
EndIf
* .
* Create new entry for old root
*/
Define index entry, newEntry
Call newEntry = createIndexEntry ()
*
* Couldn’t allocate new.entry for old root node.
* This is a fatal error, ... (see above)
*/ .
If newEntry == NULL Then
Call errorMessage(allocation failure)
Return INSERT_ALLOCATIONnFAILURE
EndIf
/*
* Setup newEntry to reference the old root
*/ .
Set newEntry.child.node
Set newEntry.key
/* '
* Place newEntrY and splitEntry onto newRoot
*/ .
Place newEntry on newRoot
Place splitEntry on newRoot
/*

root
keysUnion(root.entries)

[

A-63

* * X * * *

fatal.
*/

*

*/

/*

* Update root for return
*/
Set root = newRoot
EndIf

A chooseEntry failure occurred for a child. - The
chooseEntry routine is only called while descending the
tree, so an error of this type means that the current
index has not been altered, and so the error is non-

Else If error == INSERTLENTRY_CHOOSE_ENTRY_FAILURE Then

Call errorMessage(failed to place new entry)
Return INSERT_ INSERT_ENTRY_ FAILURE_NON_FATAL

* A fatal error occurred while splitting on some child of the
* root node. The current index has been altered prior to the
* error and no recovery is possible. ‘

Else If error == INSERT ENTRY SPLIT NODE FATAL Then

Call errorMessage(.failed to place new entry)
Return INSERT_INSERT ENTRY FAILURE_ FATAL

* A non-fatal error occurred while splitting a leaf node. The
* current index has not been altered prior to the error.

*/

Else If error == INSERT ENTRY SPLIT NODE NON FATAL Then

EndIf
/ *
* Done

*/

Call errorMessage(failed to place new entry)
Return INSERT_INSERT ENTRY FAILURE_NON_FATAL

Return INSERT SUCCESS

Test:

A.11.13 insertEntry

Name:
Input:

Output:
Return:

Description:

insertEntry

node to place new entry, node

new index entry, entry

level to place entry, level

integer fan value, fan

possible new entry from splitting, splitEntry
INSERT_ENTRY_SUCCESS, or
INSERT_ENTRY_CHOOSE_ENTRY_FAILURE

INSERT _ENTRY_SPLIT NODE FATAL

INSERT ENTRY_SPLIT NODE NON FATAL

Inserts entry onto provided node at specified level. If the current node is
not at the specified level, i.e., above, the method chooseEntry is used to
determine best entry of current node for insertion and then the new entry is
inserted onto the child of the chosen entry using recursive call. If the

current node is at the specified level, the new entry is placed on node
splitting if necessary via the splitNode method. The output is the possible
new sibling or split entry which is passed to the calling routine for parent
insertion. If no splitting occurs, the split entry value is set to NULL.

Calls: chooseEntry ()

errorMessage()

insertEntry()

keysUnion()

splitNode()
Get index node, node , /* node to place entry on */
Get index entry, entry /* new entry to place */
Get level , /* level to placé entry */
Get integer fan, fan i /* fan or order of index tree */
Get index entry, splitEntry . /* entry after split */
Define integer, error /* error flag */

Assert that 0 < fan < MINIMUM FAN SIZE
Assert that level >= LEAF

/*

* If the current node is not at the spe01f1ed level, then choose

*/

* branch and descend unitl correct level is reached.

If node.level > level Then

/ *
* Choose index entry on node to place entry. Note that the
* .only way for chooseEntry to fall is for node to be
empty.
*/
Define index entry, chosen
Set chosen = chooseEntry(node, entry)
If chosen == NULL Then :
/ %*
* Can’t choose an entry on node because node is
* empty, which means tree is unbalanced.
* / .
Call errorMessage(unbalanced tree)
Return INSERT ENTRY CHOOSE_ENTRY FAILURE
EndIf :
/ *
* Descend tree through chosen branch until level is
reached
*/
Call error = insertEntry(chosen.child.node, entry, level,
fan, splitEntry)
/ *
* A successful insertEntry call causes a key adjustment
* and a check to see if sgplitting occurred.

*/ .
If error == INSERT_ENTRY_SUCCESS Then
[
* Adjust key after insertion
*/ .
Set chosen key = keysUnion(chosen.child.node.entries)
/*

A-65

* Check for splitting

*/

If splitEntry != NULL Then

/*

* Child was split and splitEntry is valid.

* Check to see if ‘current node is full, 1f
* not, place the split entry onto the current
* node. Otherwise, split current node.

*

If number of node.entries < fan Then

Else

/* ;
* There is room for entry on this node
*/
Place splitEntry on node
/ * !
* No splitting
*/
Set splitEntry = NULL

Define temp index entry, tempEntry
/*
* Place new entry by splitting node.
* Note that the splitEntry is being
* placed on node which will create a new
-* node/entry sibling called tempEntry.
*
/
Call error = splitNode(node, fan,
. splitEntry, tempEntry)
/*
* Check the return code for a non-
* guccessful split. Any non-successful
* gplit will cause a fatal error to
occur
* gince the current implementation does

not attempt an “undo” mechanism, i.e.,

saving the original branch and

restoring the index tree to its

previous state. The only case where a

* gplitNode failure is non-fatal, is
when

* the splitting occurred at the LEAF

* level which means the index is still
in

* its original state.

*/

If error != SPLIT_NODE_SUCCESS Then
Return
INSERT_ENTRY_SPLIT_NODE_FATAL

EndIf

/A

* Set splitEntry to tempEntry value.

The

* 651d value for splitEntry was placed

* onto node above. The value of

* tempEntry needs to be placed on the

* parent of node which is accomplished
by

* ¥ * F

A-66

Else

* getting the value of splitEntry to the
* correct value
*/

Set spl;tEntry tempEntry

EndIf
EndIf
/*
* A chooseEntry failure occurred for a child. The
* chooseEntry routine is only called while descending the
* tree, so an error of this type means that the current
* index has not been altered and ‘so the -error is non-
* fatal.
*/
Else If error == INSERT_. ENTRY CHOOSE ENTRY FAILURE Then
/*
* Propogate error to calllng process
*
/
Return INSERT ENTRY CHOOSE_ENTRY_FAILURE
/*

* » fatal error occurred durlng a node split. The error
is
* fatal because the index was altered prior to the error
* occuring. Thus, the state of the index is not known
* (balanced,etc.). :
*/
Else If error == INSERT ENTRY SPLIT_NODE_ FATAL Then
Return INSERT_ENTRY_| SPLIT NODE_ FATAL
/*
* A non—fatal error occurred during a node split. This
* error is non-fatal because the split error occurred
* before the index was altered, i.e., during a leaf node
* gplit.
*/ .
Else If error == INSERT_ENTRY SPLIT_NODE_NON_FATAL Then
Return INSERT ENTRY SPLIT NODE_NON_FATAL
EndIf

/*
* Install entry on node, splitting if necessary
*/
If number of node.entries < fan Then
/*
* There is room for entry on this node
*/
Place entry on node
/*
* No splitting
*/
Set splitEntry = NULL
Else
/*
* Place new entry by spllttlng node
*/

Call error = splitNode(node, fan, entry, splitEntry

)
If error == SPLIT_NODE_ALLOCATION_FAILURE Then

/*

A-67

EndIf
/*
* Done

*/

Allocation error occurred when the node
attempted to split for new entry. This is a
FATAL error, unlesgss the node was a LEAF node
which means a sgplitNode failure has not yet
effected the index tree. If the node which
* failed to split is a LEAF node, return a
non-
* fatal error code.
*/
Call errorMessage(failure to split node in
insertEntry)
If node.level == LEAF Then
Return INSERT_ENTRY SPLIT NODE NON_FATAL

* % ¥ ¥ *

Else ; .
Return INSERT ENTRY SPLIT NODE_FATAL
EndIf
EndIf
EndIlf

Return INSERT ENTRY SUCCESS

Test:

A.11.14 partitionEntries

Name:
Input:

Output:

Return:

Description:

partitionEntries

input list of entries, I

integer fan value, fan

output list of entries, A

output list of entries, B

void

Separate input list of index entries into two groups. The method used for
partitioning the entries is extremely implementation dependent. The basic
idea is to set-up the two output index entry lists to have minimal bounding
hyper-cubes which will improve later queries on the index since fewer
branches of the index will need to be traversed to satisfy the query
command. However, the method itself is probably the most
computationally expensive of the insertion subroutines, because multiple
loops through the index entry lists and penalty calculations are required
for true “minimal” bounding hyper-cubes to be determined. If multiple
branch searches is not prohibitive, i.e., a parallel search is possible or
query response is not time consuming relative to an insert operation, then
the partition subroutine can use a sub-minimal approach. In fact, the
partition can simply split the input list into two equal groups ignoring the
bounding hyper-cubes completely. The effect will be to cause new
traversals of the index to descend multiple branches, but this trade-off may
be acceptable for a given implementation.

A-68

The partitioning takes place in two stages. The first stage finds the two
entries within the input list which produce the “largest” index key, or the
two entries whose union has the greatest hyper-cube volume among all
possible combinations of the input list. Each of the entries which form
this “worst” pair is used as the seeds, or first members, of the partitioned
groups, A and B, and are “removed” from the input list. The second stage
assigns the remaining entries of the input list I to one of the partitioned
groups based on which group seed yields the smaller penalty. A smaller
penalty indicates an “attraction” to that group and will yield small total
entry index keys which in turn improves query response. The second
stage has a special case where one of the two partitioned groups is full. In
this case, all of the remaining entries are assigned to the other group.

On entrance, the list I should have at least MINIMUM_FAN_SIZE entries
and no more than 2*fan entries, and the output lists A and B should be
empty(NULL). On exit, the input list I is empty (NULL), and the output
lists A and B have the partitioned entries. Each list is ready for insertion
into an IndexNode.

Calls: errorMessage()

penalty()
Get list of index entries, I /* input list to partition */
Get list of index entries, A /* 1st group of T */
Get list of index entries, B /* 2nd group of I * /
Get integer fan value, fan /* fan of index 4 */

Assert that
Assert that
Assert that
/*

*

Stage 1

fan < MINIMUM_FAN_SIZE
size of list I is < MINIMUM_FAN_SIZE
size of list I > 2 * fan

Find “worst” combination of all ‘entries in I. The worst

combination is the one which produces the largest key union, or
the largest bounding hyper-cube. The two entries which form
this worst combo will be the first entries into the two groups.
The method used to find the worst combo is a straight forward
enumeration of all possible combinations. Note that only
forward combinations are necessary, i.e., the volume of the
union(A,B) is the same as the volume of the union(B,A). The
first candidate pair for the worst case are chosen as the first
and second entries of the input list, I.

* % F Ok X F F ¥ * * %

*/
Define index entry, seedA /* first entry in group A */
Define index entry, seedB /* first entry in group B * /
Set seedA = first entry of I
Set seedB = second entry of I

/*

* A double loop through the input list, I, is used to find all

* combinations.

*/
Loop for each index entry, entryl, in I

Loop for each index entry, entry2, in I after entryl

A-69

/*
* If this combination produces a worse pair, then
* replace old candidates with new pair.
Ny . .
If volume of union(entryl, entry2) > volume of
union(seedA, seedB) Then
Set seedA = entryl
Set seedB = entry2
EndIf
EndLoop
EndLoop
/* _
* The entries, A and B, now point to the first entries
* into the two groups which are forming during the partition.
*/
Add seedA to A and remove from I
Add seedB to B and remove from I
/*
* Stage 2

Assign all remaining entries of I to each group based on
penalty. The current implementation finds the penalty of the
entry with the first entries into the groups. Other methods
are possible, including using the penalty of the current
group. Once an index entry as been assigned to a group, A or
* B, remove that entry from the input list, I.

* % F X * *

*
/
Loop for each index entry, entry, in I
/*
* If either A or B is full, then place rest of entries on
* list which is not full.
*/
If size of A >= fan Then
Add entry to B
Remove entry from I
Else If size of B >= fan Then
Add entry to A
Remove entry from I
Else
/*
* Neither A or B is full, so assign entry to group
* based on penalty.
*/ :
If volume of union(entry, seedA) > volume of union(
entry, seedB) Then
Add entry to A
Else
Add entry to B
EndIf
Remove entry from I
Endif
EndLoop
/*
* Done
*/
Return

A-70

Test:

The test of the partitionEntries() routine will consist of a known
input/output test case consisting of a group of pseudo-2D objects. The
objects for the case are shown in the following figure with an underlying
grid to facilitate the test description. The objects are shown as two-
dimensional, using X and Y, and the last two dimensions are specified to
have a “thickness” of unity. This allows the four-dimensional R-Tree

implementation to correctly function.

X
0 N io IN

A R I 1 A R

The index keys (bounding-box) for each object is given in the following
table. Note that the “thickness” of the T and Z dimensions are unity.

Object
1 2 3 4 5 6
T 0 0 0 0 0 0
Lower | X | O 1 10 3 12 6
Point Y 0 7 5 4 10 1
‘ 7 0 0 0 0 0 0
1 T 1 1 1 1 1 1
Upper X 3 7 11 8 15 7
Point Y 3 8 11 6 12 2
1 Z 1 1 1 1 1 1

The first stage of partitioning finds the “worst” pair, the pair with the
largest index key union, as the seeds for the two new partitioned groups.
The following table lists the penalties for all possible pairs for the test
case.

- Object

Object

Volume

1

2

56

A-T1

1 3 121
1 4 48
1 5 180
1 6 21
2 3 60
2 4 28
2 5 70
2 6 42
3 4 56
3 5 35
3 6 50
4 5 96
4 6 25
5 6 99

The “worst” case is the pair of Object 1 and Object 5 and each object
forms the seed for, or is the first member of, the two new partitions. The
next stage of partitioning adds the rest of the objects to each group based
on which group seed will yield the lowest volume. The following table
shows each of the remaining objects and their volume for both Object
1/Group A and Object 5/Group B with the group assignment highlighted
in the table.

Object Penalty(1, Object) | - Penalty(5, Object)
2 47 64
3 112 29
4 39 90
6 12 93

A successful test of the paritionEntries() routine will produce the correct
values of the volumes as well as a correct parition of the groups where the
first group will have objects 1, 2, and 4 and the second group will objects
3 and 5.

A secondary test would be to set the fan size to less than four. This will
force the last entry, Object 6, to be placed in group B rather than group A.

A.11.15 penalty

Name:
Input:

Output:
Retumn:

penalty

index entry, A

index entry, B

float value of penalty, penalty
float value, penalty

A-T2

Description: Calculate and return the penalty for the two input index entries. The
penalty for the index is defined as the “change in area” proposed by
Guttman in the original 1984 paper. Given two index entries, A and B, the
penalty is defined as
penalty = volume(union(A, B)) - volume(A)
Note that the penalty routine is not communative, i.e., the penalty(A, B)
is not necessarily the same as the penalty of (B, A)
Calls:
System:
Get index entry, A : /* input index entry */
Get index entry, B /* input index entry */
Get float, penalty /* calculated penalty */
Define index key, key /* index key of union */
*
/* Find union of A and B keys
*
Seé key = union of A.key and B.key
*
/* Determine theh increase in volume which is the penalty
*
/ Set penalty = volume of key - volume of A.key
* . X
/* Done
*/
Return penalty
Test:
A.11.16 query
Name: query
Input: index (root node), node
search index key, searchKey
search non-key values, searchNonKeys
check validity flag, checkValidity
Output: List of index entries, solutionSet
Return: QUERY_SUCCESS
QUERY_INVALID KEY_SEARCH_VALUE
QUERY _INVALID NON_KEY_ATTRIBUTE_CODE
Description: Searches index and returns list of index entries which are consistent with

the search keys. The routine first uses the R-Tree index to find individual
leaf nodes which point to data object’s which have index keys which are
consistent with the search key. The found data object’s non-key attributes
are then compared with the input list of non-key search values for
consistency. The input list of non-key search values consist of the
attribute code and a character sequence. Two utility subroutines are used
to check the validity of the input search values. The input is checked only
when the input flag is set to TRUE which prevents multiple checks of the
same data since this routine is applied recursively. Note that the index is

A-73

never altered by a query which means no error is fatal. Two utility
subroutines are used to determine consistency which is intersection for the
DIS application. The utility subroutines are used to separate the specific
hyper-cube dimension and character string from the general R-Tree

algorithm.
Calls: consistentKey()

consistentNonKey()

validKey()

validNonKey()
Get index node, node , /* sub-tree node */
Get index key, searchKey » /* key for search */
Get list of non-key values, searchNonKeys /* non-key search */
Get integer , checkValidity , /* validity flag */
Define index entry list, solutionSet /* solution list =*/

Set solutionSet = EMPTY

/* :
* Check key and non-key search values for validity if requested
*
/
If checkValidity == TRUE Then
If validKey(searchKey) == FALSE Then
Call errorMessage(Invalid key search)
Return QUERY_INVALID KEY SEARCH_VALUE
Else If validNonKey(searchNonKeys) == FALSE Then
Call errorMessage(Invalid non-key search)
Return QUERY_INVALID NON_KEY ATTRIBUTE_CODE
EndIf
EndIif
/ *

* Search on key attributes first. All data objects are
* referenced from the leaf level, so any query which is above
* that level should check each branch, descending if necessary.

*
/
If node.level > LEAF Then
/* o
* Descend tree until leaf. Note that the level decreases
* as the tree is descended with level = LEAF = 0 being a
* leaf node.
*/
Loop for each entry tempEntry of node
If consistentKey(tempEntry.key, searchKey) == TRUE
Then
Define temporary solution set, tempSolutionSet
/*
* Query on all consistent children w/o
checking
* input since only the root or top node should
* check only once.
*/
Call query(tempEntry.child.node, searchKey,
searchNonKeys, FALSE, tempSolutionSet)
Add tempSolutionSet to solutionSet
EndIf
EndLoop
Else

Loop for each entry tempEntry of node

*
* Compare search key and stored data object key
*
If consistentKey(tempEntry.key, searchKey) == TRUE
Then
/ *
* Set an upper bound for checking stored
* attributes to prevent out-of-bounds errors
*
/
Define integer upperBound = 0 8
If tempEntry.child.dataObject.type == SMALL
Then , ' ; .
Set upperBound = SIZE OF_SMALL_ATTRIBUTE
Else If. tempEntry.child.dataObject.type ==
MEDIUM Then ,
Set upperBound = SIZE_OF_MEDIUM_ATTRIBUTE
Else If tempEntry.child.dataObject.type ==
LARGE Then
Set upperBound = SIZE_OF_LARGE_ATTRIBUTE
EndIf
/ *
* Check all non-key search values until done
or . ‘
* until non consistent value found
*/ : .
Define integer acceptanceFlag = TRUE
Loop for each DataAttribute nomKey in
searchNonKeys and while acceptanceFlag ==
TRUE ;
/ * .
* only check search attributes which are
* relevant to data object
*
/
If nonKey.code < upperBound Then
/* :
* Set acceptanceFlag to result of
* consistency check
*/) .
Define integer attributelIndex =
nonKey.code -
NUM_OF_KEY ATTRIBUTES
Set acceptanceFlag =
consistentNonKey{ nonKey.value,
tempEntry.attributes|
attributeIndex])
EndIf
EndLoop
/ *
* If no non-key search values were
* inconsistent, add data object to sclution
* set. At this point, the data object could
* also be placed in an output queue rather
than
* adding it to a list.
*/
If acceptanceFlag == TRUE Then’

A-75

EndIf
/*
* Done

*/

Add tempEntry to solutionSet
EndIf
EndIf
EndLoop

Return QUERY SUCCESS

Test:

A.11.17 splitNode

Name: splitNode

Input: node to split, nodeToSplit
fan or order of index tree, fan
new entry which caused split, entry

Output: entry of new node after splitting, splitEntry

Return: SPLIT _NODE_SUCCESS, or
SPLIT NODE_ALLOCATION_FAILURE

Description: This routine splits an index node. An index node needs to split whenever
a new index entry is added to the node and the node is full, i.e., the current
number of entries residing on the node is equal to the fan or order of the
index tree. A node split consists of dividing the current entries of a node
and the new entry into two groups via a partitionEntries routine. One
group is placed onto the node and the other group is placed onto a new
node created for that purpose. A new index entry is created for the new
node and is returned as the splitEntry in the output. Since both a new
index node and a new index entry are created during the splitting process,
a memory allocation failure is possible during the execution of this
subroutine. The allocation failure is fatal for most uses of the method, but
in certain cases, splitting a leaf node for instance, a recovery is possible at
a higher level. For this reason, the splitNode routine will “clean-up”
before returning, i.e., deallocating memory, etc.

Calls: createIndexEntry()
createIndexNode()
deleteIndexNode()
errorMessage()
keysUnion()
partitionEntries()
System:

Get index node, nodeToSplit /* node to split */

Get integer, fan /* fan or order of index tree */

Get index entry, entry /* entry to add to node */

Get index entry, splitEntry /* entry of new node */

Assert that fan < MINIMUM FAN SIZE

/*

A-76

* Create new node for partitioning. The new node is a
* “gibling” of the input node, so its level is the same.
*/
Call tempNode = createIndexNode (nodeToSplit.level)
If tempNode == NULL Then : : .
Call errorMessage(allocation failure)
Return SPLIT_NODE_ALLOCATION_FAILURE
EndIf .
/* : .
* Create new entry which references the newly created node.
*/ :
Call splitEntry = createIndexEntry();
If splitEntry == NULL Then
/*
* Free tempNode memory
*/ . .
Call deleteIndexNode(tempNode)
%* : ’ .
* Alert user of error and return error code
,*/ . .
call errorMessage(allocation failure)
Return SPLIT_NODE_ALLOCATION_FAILURE)
Else

*

* The child of the split entry is the new node

*/ . .

Set. splitEntry.child = tempNode

* ;

* Create a list which is the current entries of the node to split
* and the entry which caused the split to occur.
*f '

Define list of index entries, listOfEntries

Set 1istOfEntries = nodeToSplit.entries + entry

/*)

*+ Partition entries onto old nodeToSplit and new temporary node
*/
Call partitionEntries(1listOfEntries, fan, nodeToSplit.entries,
tempNode.entries) :
/* :))

* Adjust key of splitEntry for new node. Note that the key of
the entry for nodeToSplit is adjusted in the same process that
called splitNode.

*/
Set splitEntry.key = keysUnion(tempNode.entries)
/*
* Done
*/
Return SPLIT NODE SUCCESS

Test:

A.11.18 validKey

Name: validKey
Input: index key, key

A-77

Output:

flag indicating whether key is valid

Return: TRUE or FALSE

Description: Returns boolean value indicating if the index key is valid, i.e., the lower
point is actually lower than the upper point, etc.

Calls:
System:

Get index key, key /* index key for search */

/* ' '

* Check hyper-points

*/

If key.lower.T > key.upper.T Then

Else If key.

Else If key.

Else If key.

Endlf
/*
* Done
*/
Return TRUE

Call errorMessage{ Lower T > upper T)
Return FALSE .
lower.X > key.upper.X Then

Call errorMessage(Lower X > upper X)
Return FALSE

lower.Y > key.upper.Y Then

Call errorMessage{ Lower Y > upper Y)
Return FALSE .)
lower.Z > key.upper.Z Then
Call errorMessage(Lower Z > upper Z)

Return FALSE

Test:

A.11.19 validNonKey

Name:
Input:
Output:
Return:
Description:

Calls:

validNonKey

list of non-key values, nonKeys

flag indicating valid attribute codes and strings

TRUE or FALSE

Returns boolean value indicating if non-key attribute list is valid. The
condition for validity is that all of the data attribute codes within the list
must lie within both the min/max of all attribute codes and are not key
attribute codes, and that the character sequence is non-NULL.
errorMessage()

System:

/* non-key values */

Get list of
/*

non-key values, DataAttribute nonKeys

* Check non-key search values for valid attribute codes

*/

Loop for each DataAttribute nonKey in nonKeys

/*
* Check that the attribute code lies with min/max range

*/

A-78

If nonKey.code < MIN_ATTRIBUTE_CODE || nonKey.code >=
MAX_ATTRIBUTE_CODE~Then
Call errorMessage(Out-of-range non-key
attributecode)
Return FALSE
/ *
* Check that the attribute code is not for a key attribute
*/
Else If nonKey.code < NUM_OF_KEY ATTRIBUTES Then
Call errorMessage(Invalid non-key attribute code)
Return FALSE
/* ‘
* Check that the attribute value (char string) is non-NULL
*/
Else If nonKey.value == NULL Then
Call errorMessage(Empty string for non-keyattribute
)
Return FALSE
EndIf
EndLoop
/ *
* Done
*/
Return TRUE

Test:

A.12 INPUT & OUTPUT

A.12.1 closeFiles

Name: closeFiles

Input: input FILE pointer, inputFile
output FILE pointer, outputFile
metrics FILE pointer, metricsFile

Output: none
Return: void
Description: Closes the three files used during application.
Calls: errorMessage()
System: fclose()

Get input FILE pointer, inputFile
Get output FILE pointer, outputFile
Get metrics FILE pointer, metricsFile

*
/* Input File

*/

Call error = fclose(inputFile)
If error != ZERO Then
Call errorMessage (Error closing inputFile)
EndIf ‘
/*
* Qutput File
*/

A-79

Call error = fclose(outputFile)
If error != ZERO Then
Call errorMessage(Error closing outputFile)
EndIf
/*
* Metric File
*/
Call error = fclose(metricsFile)
If error != ZERO Then
Call errorMessage(Error closing metricsFile)
EndIf
/*
* Done
*/
Return CLOSE FILES SUCCESS

Test:

A.12.2 flushOutputBuffer

Name: flushOutputBuffer

Input: output FILE ptr, outputFile

Output: none

Return: FLUSH _OUTPUT_BUFFER_SUCCESS, or
FLUSH OUTPUT_BUFFER_FAILURE

Description:

Calls: errorMessage()
System: fopen()

Get output FILE ptr, outputFile

/* Done

*/
Return FLUSH OUTPUT BUFFER SUCCESS
Test:

A.12.3 getDeleteCommand

Name: getDeleteCommand
Input: FILE pointer, file
Output: index key, searchKey
list of non-key values as data attributes, searchNonKey
Return: GET_DELETE_SUCCESS or

GET DELETE 10 ERROR
GET _DELETE INVALID CODE ERROR
GET _DELETE _EARLY EOF OR_EOL ERROR
GET_DELETE ALLOCATION_ERROR

Description: Reads delete command from input stream via FILE pointer. Assumes
current stream pointer is correct, and returns file pointer open and current
position immediately after command just read. The file pointer is

expected to be at the beginning of the Delete command immediately after
the command code. The Delete command consists of a list of attribute
code and value pairs. An error occurs if any attribute code does not have
an accompanying attribute value. For any error during read (missing pair,
etc.), the routine will leave the current values of the command attribute
list intact and clear the FILE pointer to the end of the current line.

A Delete command is made up of a list of attribute code and value pairs.
The total number of pairs can range from zero to the
MAX_ATTRIBUTE_CODE. Each command is carriage return delimited,
i.e., one line per command. So, to read the Delete command, read until the
line and store the attribute code/value pairs as we go along.

It is possible to have a delete command return an empty attribute list
without producing an error. Since missing attributes are defaulted to wild-
card values, this type of delete would logically remove the entire database.
This “database” delete is a valid delete command as defined by the

specification.
Calls: clearLine()
errorMessage()
System: scanf()
strepy()
Get FILE pointer, file - /* file to read */
Get index key, searchkey /* key part of command */
Get non-key DataAttribute list, searchNonKey /* non-key part */
' /* of command */
/ *
* Set searchKey to wild-card values (max or min)
*/

MINIMUM_VALUE_OF_FLOAT
MINIMUM_VALUE_OF FLOAT
MINIMUM_VALUE_OF_FLOAT
MINIMUM_VALUE_OF FLOAT

Set searchKey.lower.
Set searchKey.lower.
Set searchKey.lower.
Set searchKey.lower.

0N X

Set searchKey.upper.
Set searchKey.upper.
Set searchKey.upper.
Set searchKey.upper.
/*
* Set non-key attribute list to empty which clears out anything
* which was left over from previous reads or from initialization.
*/
Set searchNonKey = EMPTY
/* ,
* Check assumptions for attribute code values
*/ . .
Assert that NUM_OF_KEY ATTRIBUTES < total number of attributes
Assert that every key attribute code < every non-key attribute
code - :

MAXIMUM_VALUE_OF_FLOAT
MAXIMUM_VALUE_OF_FLOAT
MAXIMUM_VALUE_OF FLOAT
MAXIMUM VALUE OF_FLOAT

Do

/*
* Read Delete command
*

A-81

* X ¥ ¥ *

*

*/

A Delete command is made up of a list of attribute code and
value pairs. The total number of pairs can range from zero to
the MAX_ ATTRIBUTE_CODE. - Each command is carriage return
delimited, i.e., one line per command. So, to read the Delete
command, read until the line and store the attribute code/value
pairs as we go along.

While not at end-of-file or end-of-line

Define integer attributeCode
Read attributeCode
/*
* Check for I/0 error (low-level fault . in stream)
*/ » _ ‘
If I/0 error during read Then
Call errorMessage(error in read)
Return GET DELETE_IO_ERROR

*
/* Check for end-of-file(EOF) or end-of-line (EOL)
*
Elée If end-of-file || end-of-line Then
*
* Normal terhination of Delete read
* .
Return GET_DELETE_SUCCESS
*
/*/Check for invalid attribute code
*

Else If attributeCode < MIN_ATTRIBUTE_CODE or attributeCode
> MAX ATTRIBUTE_CODE Then
Call errorMessage{(WARNING: Invalid attribute code)
Call clearLine ()
Return GET_DELETE_INVALID CODE_ERROR
/*
* Check code. for key attribute value
*/ ’
Else If attributeCode < NUM_OF_KEY ATTRIBUTES Then
/*
* Read key attribute wvalue
*/
Define Float value
Read value
/*
* Check for I/0 error (low-level fault in stream)
*/
If I/0 error in read Then
Call errorMessage(error in read)
Return GET_DELETE_IO_ERROR
/* ,
* Check for early end-of-file(EOF) or
* end-of-line (EOL)
*/
Else If end-of-file || end-of-line Then
Call errorMessage(early EOF or EOL)
Return GET_DELETE_EARLY EOF_OR_EOL_ERROR
/*
* Add key value to searchRey. We do not need a
final o :

A-82

* Else on the options for the code value since
* previous checks would have eliminated the case
* before now.

*/
Else :
If attributeCode == LOWER_POINT T Then
Set searchKey.lower.T = value
Else If attributeCode == LOWER_POINT X Then
Set searchKey.lower.X = value
Else If attributeCode == LOWER_POINT_Y Then
Set searchKey.lower.Y = value
Else If attributeCode == LOWER_POINT_Z Then
Set searchKey.lower.Z = value
Else If attributeCode == UPPER_POINT T Then
Set searchKey.upper.T = value
Else If attributeCode == UPPER_POINT_X Then
Set searchKey.upper.X = value
Else If attributeCode == UPPER_POINT_Y Then
Set searchKey.upper.Y = value
Else If attributeCode == UPPER_POINT_Z Then
Set searchKey.upper.Z = value
EndIf
EndIf
/* >
* Non-key attribute code
*/
Else
/ *
* Read non-key attribute value
*
/ .

Define Char *value;
Read wvalue
/*
* Check for I/O error (low-level fault in gtream)
*/ :
If I/0 error in read Then
Call errorMessage(error in read)
Return GET_DELETE IO_ERROR
/*
* Check for early end-of-file(EOF) or
* end-of-line (EOL) o

*/ .
Else If end-of-file || end-of-line Then
Call errorMessage(early EOF or EOL)
Return GET DELETE_EARLY EOF OR_EOL_ERROR
/*
* Create and add new data attribute
*/ . :
Else

Define DatalAttribute, attribute

Set attribute = new DataAttribute

If attribute == NULL Then .
Call errorMessage(memory allocation)
Return GET_DELETE_ALLOCATION_ERROR

EndIf
Set attribute.code = attributeCode
Set attribute.value = value

A-83

EndLoop
/*
* Done

*/

Add attribute to searchNonKey
EndIf '
EndIf

Return GET DELETE SUCCESS

Test:

A.12.4 getInitCommand

Name: getInitCommand

Input: FILE pointer, file

Output: integer fan size, fan

Return: GET INIT SUCCESS or
GET_INIT 10 _ERROR
GET_INIT EARLY EOF OR _EOL_ERROR
GET _INIT _INVALID FAN

Description: Reads the initialization command from input stream via FILE pointer.
Assumes current stream pointer is at beginning of the file and returns file
pointer open and current position immediately after command just read.
The routine differs from other index command reads in that the command
type is read first and the routine is meant as a special case for a first and
only read once init command.
The current implementation reads only one parameter from the init
command which is the fan size. The absence of the fan or an incorrect fan
value (< MINIMUM_FAN_SIZE) causes an error to occur.

Calls: clearLine()
errorMessage()
System: scanf()

Get FILE pointer, file /* file to read from */

Get integer, fan /* fan size read for index */

Define Char, temp /* temporary storage for reading *x/

/*

* Read fan

*/
Read fan

/*

* Check for I/0 error (low-level fault in stream)

*/

If I/0 error during read Then

Call errorMessage(error in read)
Return GET_INIT_ IO_ERROR

/*
* Check for early end-of-file(EOF)} or end-of-line(EOL)
*/

Else If end-of-file || end-of-line Then

Call errorMessage(early EOF or EOL)
Return GET_ INIT EARLY EOF_OR_EOL_ERROR

A-84

/*

* Check for invalid fan value

*/

Else If fan < MINIMUM_ FAN_SIZE Then

EndIf
/*

*/

Ccall errorMessage(Invalid fan size)
Return GET_INIT_INVALID_FAN

* Clear rest of the line, ignoring any vjunk” present

Call clearLine ()

/*
* Done

*/

Return GET INIT SUCCESS

Test:

A.12.5 getInsertCommand

Name:
Input:
Output:
Return:

Description:

Calls:

getInsertCommand

FILE pointer, file

data object, dataObject

GET_INSERT_SUCCESS, or

GET _INSERT_IO_ERROR
GET_INSERT_EARLY_EOF_OR_EOL_ERROR

GET_INSERT UNKNOWN_DATA_OBJECT_TYPE
GET_INSERT_ALLOCATION_ERROR

Reads insert command from input stream via FILE pointer. Assumes
current stream pointer is correct, and returns file pointer open and current
position immediately after command just read. The file pointer is
expected to be at the beginning of the Insert command immediately after
the command code. The Insert command consists of the data object type
identifier and a complete listing of the attributes (key and non-key) for the
object. An error occurs if the object is of an unknown type or any of the
attributes are missing. For any error during the read (missing attribute,
etc.), the routine will leave the current values of the command attribute list
intact, clear the current line, and returns the error code.

An Insert command is made of a data object type specifier and a list of the
attributes for that type. No attributes can be missing or an error occurs.
Each command is carriage return delimited, i.e., one line per command.
The command is read by first readings the type, setting a local variable to
determine the number of non-key attributes which will be read later in the
command line, and then processing the line.

The output of the routine is the data object which is ready to be inserted
into the index.
errorMessage()

A-85

System: scanf()
strepy()

Get FILE pointer, file /* file to read insert command */
Get data object, dataObject /* output data object read in */
Define integer, dataObjectType /* upper bound determined */
Define integer, upperBound /* upper bound determined x/

/* by data object type */
/

Read Insert

An Insert command is made of a data object type specifier and a
list of the attributes for that type. No attributes can be
missing or an error occurs. Each command is carriage return
delimited, i.e., one line per command. The command is read by
first readings the type, setting a local variable to determine
the number of non-key attributes which will be read later in
the command line, and then processing the line..

% % ok % ok K % % ok ok

*/
Read dataObjectType
* .
* Check for I/O error (low-level fault 'in stream)
*/
If I/0 error reading Then
Call errorMessage(error during read)
Return GET_.INSERT IO ERROR
/*
* Check for end-of-file(EOF) or end-of-line (EOL)
* .
Else If end-of-file || end-of-line Then
Call errorMessage(early EOF or EOL)
Return GET_INSERT EARLY EOF_OR_EOL_ERROR
/*
* Create data object for entry based on dataObjectType read and
* get the upperBound to value determined by data object type
*/
Else If dataObjectType == SMALL Then
Set dataObject = createDataObject(SMALL)
Set upperBound = NUM_OF KEY ATTRIBUTES +
NUM_OF_SMALL_ATTRIBUTE - 1
Else If dataObjectType == MEDIUM Then
Set dataObject = createDataObject(MEDIUM)
Set upperBound = NUM _OF KEY ATTRIBUTES +
NUM_OF_MEDIUM_ATTRIBUTE - 1
Else If dataObjectType == LARGE Then
Set dataObject = createDataObject(LARGE)
Set upperBound = NUM_OF_KEY ATTRIBUTES +
NUM_OF LARGE_ATTRIBUTE - 1

/*
* Unknown data object type
*/
Else :
Call errorMessage(Unknown or invalid object type read)
Return GET_ INSERT_ UNKNOWN_DATA OBJECT TYPE
EndIf
/*

* Check for memory allocation error

A-86

*/
If dataObject == NULL Then
Call errorMessage(allocation error)
Return GET_INSERT_ALLOCATION_ERROR
EndIf
/*
* The attributes in the Insert command come in the proper order,
* i.e., attribute one is first, attribute two is second, etc.
* Thus, the first NUM_OF_KEY ATTRIBUTES are read first and added
* to the command attribute list. ;
*/
Loop for I = 0 to NUM_OF KEY ATTRIBUTES - 1
/*
* Read key value
*/
Define Float value
Read value
/* . . .
* Check for I/O error (low level fault in stream)
* / .
If I/0 error durlng read Then
Call errorMessage(error durlng read)
Return GET_INSERT IO_ERROR
/*
* Check for end-of- flle(EOF) or end-of-line (EOL)
*/
Else If end-of-file || end-of-line Then
Call errorMessage(early EOF or EOL)
Return GET_INSERT_EARLY_EOF OR_EOL ERROR
/*
* Place value of key attribute into proper spot
*/
Else If
Assert that wvalue is a Float
Set dataObject.attributes[I].key = value
EndIf
EndLoop
/*

*

The rest of the attributes are non-key and are also in the
“proper” order, i.e., numerical order. The number of
attributes is determined by the data object type (read at
beginning of line) and is checked against where the actual line
ends. TIf the end of line is reached before the total number of
attributes required are read, an error oOcCcurs. After the
correct number of attributes are read, the FILE pointer is set
to the end of the current line. This ignores any values “left
over”, but is robust by ignoring extra whitespace or other junk
which may cause an inappropriate error.

* % % ¥ * ¥ * *

*

*/
Loop for I = NUM_OF_KEY ATTRIBUTES to upperBound :
Deflne Char value /* non- key character sequence */
Read value . -
/* _
* Check for I/O error (low-level fault in stream)
*/
If error durlng read Then
Call errorMessage(error during)

EndLoop
/*

Return GET_INSERT IO_ERROR

*

* Check for end-of-file(EOF) or end-of-line (EOL)
* .
Else If end-of-file || end-of-line Then
Call errorMessage(early EOF or EOL)
Return GET_INSERT EARLY EOF OR_EOL_ERROR
/ *
* Add non-key attrirubte to proper position
*/
Else If

Set databbject;attributes[I].nonKey = value
EndIf - ’

* Clear rest of the line, ignoring any “junk” present

*/

Clear rest of line

/*
* Done

*/

Return GET INSERT SUCCESS

Test:

A.12.6 getNextCommandCode

Name: getNextCommandCode

Input: FILE pointer, file

Output: command code, command

Return: GET_NEXT_COMMAND_CODE_SUCCESS or
GET_NEXT_COMMAND_CODE_IO_ERROR
GET _NEXT COMMAND INVALID COMMAND

Description: Reads next command code from file and returns the command value. The
file input is assumed to be a DIS Benchmark Suite: Data Management data
set file where each line of the file is a separate command to read. There
are four valid values for the command code which correspond to the
database commands (insert, query, and delete) and a NONE type which
indicates that the data file is “empty”, i.e., all of the commands in the file
have been processed. A command code of NONE does not indicate an
error condition which would be returned by an error flag.

Calls: clearLine()
errorMessage()
System: scanf()

Get FILE pointer, file : /* file to read */

Get integer, command /* command code read */

Define integer, error /* error flag */

Define CommandType, commandType /* command type read */

/* ' ‘

* Read from file until a valid command code is obtained, end-of-
* file, or a I/0 error occurred. A valid command code is one

A-88

which matches one of the three types allowed for a database
command. The end-of-file (EOF) condition is used to indicate
that the dataset file has been completely read and the
application can terminate. A special code, NONE, is used to
*+ inform the end-of-file condition to the calling routine.
*/
Loop while command is not valid
Read commandType
/ *
* Check for I/0 error (low-level fault in stream)
*/
If I1/0 error during read Then
Call:errorMessage(error durlng read)
Return GET_NEXT COMMAND_CODE_IO_ERROR

* * X *

/*
* End-of- flle condition
*/
Else If end-of-file Then
/*
* No commands left in flle - termination
*/
Set command = NONE
/* ‘
* BEnd-of-line condition
*/
Else If end-of-line Then
/* |
* Blank line - ignore
*/
Call errorMessage(Blank line’)
Set command = INVALID
Return GET NEXT COMMAND _INVALID_| COMMAND
/*

* Command type read. Switch on type to read an Insert
* Query, or Delete command.

*/
Else If commandType is INSERT Then
/*
* Set command to type read
*/

Set command = INSERT
Else If commandType is QUERY Then
/*
* Set command to type read
*/ .
Set command = QUERY
Else If commandType is DELETE Then
/*
* Set command to type read
*/
Set command = DELETE
/*
* Non-fatal condition: unknown command type. Unknown
* commands cause a WARNING to be sent to the error handler
* and are ignored. The line is cleared from the input,
and = S ’
* another attempt is made to read a valid command.

A-89

EndLoop
/*
* Done

*/

*/
Else
/* .
* Notify user of condition, clear rest of line, and
* set command to invalid value to allow loop to
* continue . o
*/
Call errorMessage(Invalid command code)
Call clearLine{()
Set command = INVALID
Return GET_NEXT_COMMAND_INVALID_COMMAND
EndIf

Return GET NEXT COMMAND CODE SUCCESS

Test:

A.12.7 getQueryCommand

Name:
Input:
Output:

Return:

Description:

getQueryCommand

FILE pointer, file

index key, searchKey

list of non-key values as data attributes, searchNonKey
GET_QUERY_SUCCESS or

GET_QUERY _IO _ERROR

GET_QUERY_INVALID_CODE_ERROR
GET_QUERY_EARLY_EOF_OR_EOL_ERROR
GET_QUERY_ALLOCATION ERROR

Reads query command from input stream via FILE pointer. Assumes
current stream pointer is correct, and returns file pointer open and current
position immediately after command just read. The file pointer is
expected to be at the beginning of the Query command immediately after
the command code. The Query command consists of a list of attribute
code and value pairs. An error occurs if any attribute code does not have
an accompanying attribute value. For any error during read (missing pair,
etc.), the routine will leave the current values of the command attribute
list intact and clear the FILE pointer to the end of the current line.

A Query command is made up of a list of attribute code and value pairs.
The total number of pairs can range from zero to the
MAX_ATTRIBUTE_CODE. Each command is carriage return delimited,
i.., one line per command. So, to read the Query command, read until the
line and store the attribute code/value pairs as we go along.

It is possible to have a query command return an empty attribute list
without producing an error. Since missing attributes are defaulted to wild-

A-90

card values, this type of query would logically return the entire database.
This type of query is a valid query comand as defined by the specification.
Calls: clearLine()

errorMessage()
System: scanf()
strepy()
Get FILE pointer, file /* file to read */
Get index key, searchkey /* key part of command */

Get non-key DataAttribute list, searchNonKey /* non-key part */
: ' /* of command */

/* |
* Set searchKey to wild-card values (max or min)
*/
Set searchKey:.lower.T = MINIMUM VALUE_ OF_FLOAT
Set searchKey.lower.X = MINIMUM_VALUE_OF_ FLOAT
Set searchKey.lower.Y = MINIMUM_VALUE_OF FLOAT
Set searchKey.lower.Z = MINIMUM_VALUE_OF_ FLOAT
Set searchKey.upper.T = MAXTIMUM_VALUE OF_FLOAT

Set searchKey.upper.X MAXIMUM VALUE OF FLOAT
Set searchRey.upper.Y MAXIMUM_VALUE_OF_FLOAT
Set earchxey upper.z = MAXIMUM_VALUE_OF_FLOAT
/* '

* Set non- key attribute list to empty whlch clears out anything
* which was left over from prev1ous reads or from 1n1t1allzatlon
*/ .

Set searchNonKey EMPTY
/*

* Check assumptions for attribute code values

*/

Assert that NUM_OF_KEY ATTRIBUTES < total number of attributes
Assert that every key attrlbute code < every non-key attribute

code

/* .

* Read Query command

*

* A Query command is made up of a list of attribute code and

* value pairs. The total number of pairs can range from zero to
* the MAX ATTRIBUTE_CODE. Each command is carriage return

* delimited, i.e., one line per command. So, to read the Query

* command, read untll the line and store the attribute code/value
* pairs as we go along.

*/

While not at end-of-file or end-of-line
Define integer attributeCode
Read attributeCode
/ *
* Check for I/O error (lcw-level fault in stream)
* / :
If I/0 error during read Then
Call errorMessage(error in read)
Return GET_QUERY_IO_ERROR
/ *
* Check for end-of-file(EOF) or end-of-line (EOL)
*/

Else If end-of-file || end-of-line Then
/*
* Normal termination of Query read
*/ ’
Return GET_QUERY_ SUCCESS
/* o
* Check for invalid attribute code
* - ' .
Else If attributeCode < MIN ATTRIBUTE_CODE or attributeCode
> MAX_ATTRIBUTE_CODE Then
Call errorMessage(WARNING: Invalid attribute code)
Call clearLine () :
Return GET_QUERY_ INVALID CODE_ERROR
/* ‘
* Check code for key attribute value
*/
Else If attributeCode < NUM_OF_KEY ATTRIBUTES Then
/* .
* Read key attribute value
*/
Define Float value
Read value
/*
* Check for I/O error (low-level fault in stream)
*/
If I/0 error in read Then
Call errorMessage(error in read)
- Return GET_QUERY_TIO_ERROR
* . .
* Check for early end-of-file (EOF) or
* end-of-line (EOL)
*/
Else If end-of-file || end-of-line Then
Call errorMessage(early EOF or EOL)
Return GET_QUERY_EARLY EOF_OR_EOL_ ERROR
/* :
* Add key value to searchKey. We do not need a
final
* Else on the options for the code value since
* previous checks would have eliminated the case
* before now.
*/
Else
If attributeCode == LOWER_POINT T Then
Set searchKey.lower.T = value
Else If attributeCode == LOWER_POINT X Then
Set searchKey.lower.X = value
Else If attributeCode == LOWER_POINT Y Then
Set searchKey.lower.Y = value
Else If attributeCode == LOWER_POINT_ Z Then
- Set searchKey.lower.Z = value
Else If attributeCode == UPPER_POINT T Then
Set searchKey.upper.T = value
Else If attributeCode == UPPER_POINT X Then
Set searchKey.upper.X = value
Else If attributeCode == UPPER_POINT Y Then
Set searchKey.upper.Y = value

A-92

EndIf
/*

Else If attributeCode == UPPER_POINT Z Then
Set searchKey.upper.Z = value '
EndIf

* Non-key attribute code

*/
Else
/*

*/

* Read non-key attribute value

Define Char *value;
Read value

/*

* Check for I/0 error (low-levelffault in stream)

*/

If I/0 error in read Then

*

Call errorMessage(error in read)
Return GET_QUERY_IO_ ERROR

* Check for early end-of-file(EOF) or
* end-of-line (EOL) ’

*/

Else If end-of-file || end-of-line Then

/*

Call errorMessage(early EOF or EOL)
Return GET_QUERY_EARLY_ EOF OR_EOL_ERROR

* Create and add new data attribute

*/
Else

EndIf
EndIf
EndLoop
/*
* Done
*/
Return GET QUERY SUCCESS

Define DataAttribute, attribute

Set attribute = new DataAttribute

If attribute == NULL Then
Call errorMessage(memory allocation)
Return GET_DELETE_ALLOCATION_ERROR

EndIf
Set attribute.code = attributeCode
Set attribute.value = value

Add attribute to searchNonKey

ﬁest:

A.12.8 openkFiles

Name: openFiles

Input: input file name, inputFileName
output file name, outputFileName
metrics file name, metricsFileName

A-93

Output: input FILE pointer, inputFile
output FILE pointer, outputFile
metrics FILE pointer, metricsFile
Return: OPEN_FILES SUCCESS or
OPEN_FILES INPUT FILE ERROR
OPEN_FILES_OUTPUT FILE_ERRROR
OPEN _FILES METRIC FILE ERROR
Description: Opens files in system using input file name. The FILE pointers are left
open and return for reading from the beginning of the files.

Calls: errorMessage()
System: fopen()
Get input file name, inputFileName

Get output file name, outputFileName
Get metrics file name, metricsFileName
/ *
* Input File
* / .
Set inputFile = fopen(inputFileName, readoOnly)
If inputPFile is NULL Then .
Call errorMessage(Can’‘t open inputFileName for reading)
Return OPEN_FILES_INPUT FILE_ ERROR
EndIf
/ *
* Qutput File
*/
Set outputFile = fopen(outputFileName, writeOnly)
If outputFile is NULL Then _ ;
Call errorMessage(Can't open outputFileName for writing)
Return OPEN_FILES_OUTPUT_FILE_ ERRROR
EndIf
/ *
* Metric File
*/
Set metricsFile = fopen(metricsFileName , writeOnly)
If metricsFile is NULL Then
Call errorMessage(Can’'t open metricsFileName for writing)
Return OPEN_FILES_METRIC_FILE_ERROR
EndIf
/ *
* Done
*/
Return OPEN FILES SUCCESS

Test:

A.12.9 outputMetricsData

Name: outputMetricsData
Input: metric file, FILE metricFile
Metric struct, metrics
Output: integer flag indicating success or error
Return: OUTPUT _METRIC SUCCESS, or

A-94

Return OUTPUT METRIC SUCCESS

OUTPUT _METRIC_FAILURE
| Description:
| Calls: calcMetricsData()
System: fprintf()
Get metric file name, metricFile /* file for metric output */
Get Metric struct, metrics /* metric struct values */
/* , ,
* Determine metric performance values
* / -) s
Call calcMetricsData(metrics)
/* o :
* OQutput metric info in nice format
*/
/ *
* Done
*/

| Test:

A.12.10 outputQuery

Name: outputQuery
| Input: output buffer, outputBuffer
list of data objects, objects
Output: integer flag indicating success or error
Return: OUTPUT_QUERY_SUCCESS, or

OUTPUT_QUERY_FAILURE

Description: Place list of data objects into output buffer. The routine first converts the
data object into a character string “equivalent” as define dby the
specification. This equivalent is approximately the same as the Insert
command: data object type, eight key values (float), and the appropriate
number of non-key values (char strings). The routine will check to see if
the addition of the equivalent string will exceed the maximum size of the
buffer and flushes the buffer if appropriate.

Calls: flushOutputBuffer()
System:
Get output buffer, buffer /* buffer to place objects */
Get list of data objects, objecs /* objects to place in buffer */
/* :
* pPlace each object into output buffer
*/
Loop for every object in list of data objects, objects
/ *

* Create the string version of the data object. The
wstring version” is defined by the spec and closely
follows the format for an Insert command, i.e., the data
object type, eight key values (floats), and the
appropriate number of non-key values (char strings).
Need the string version for both output and for checking

* ¥ F ¥ F

A-95

EndLoop
/*
* Done

*/

* if buffer needs to be flushed.
*/ : X
Define character string, string
Convert object into string
/*
* Check if length of object string will exceed maximum
size
* of buffer.
*/
If length of string + current size of buffer >
MAX BUFFER_SIZE Then
/* o
* Flush the buffer to make room
*/ ;
Call flushOutputBuffer(buffer)
EndIf : :
/*
* Add object string to buffer
*/
Add string to buffer

Return OUTPUT METRIC SUCCESS

Test:

A.13 METRICS

A.13.1 calcMetricsData

Name:
Input:
Output:
Return:
Description:

Calls:

calcMetricsData

Metric structure, metrics

Metric structure, metrics

void

Calculate the average and variance of provided metric command structure
and store. The routine will only change the avg and deviation variables.
The routine checks that at least one sample time difference is present in
the command metric structure which is placed there via the
updateMetricsData routine. Two errors are possible for this routine where
the first error occurs if the routine is called for a structure that does not
have at least one sample time difference present. The second error occurs
in the event of round-off which may cause the calculated variance to be
negative, although this possibility is analytically impossible. In the case
of either error, the avg and deviation members of the command metric
structure are set to zero which prevents their later use if “junk” were left
there either as initialization or from previous calculations.

errorMessage()

getTime()

System: sqrt()

A-96

Get Metric, metrics
Define Float, temp

/*
* total time for application to execute
*/ .
Set metrics.totalTime = getTime() - metrics.totalTime
/*
* Calculate metrics for Insert command
*/
/* .
* Check for no samples in command metric
*/ .
If metrics.insertCommandMetric.numOfCommands == ZERO Then
Set metrics.insertCommandMetric.avg - = MIN_TIME_VALUE
Set metrics.insertCommandMetric.deviation = MIN_TIME_VALUE
EndIf
/*
* Find Average
*/

Set metrics.insertCommandMetric.avg =
metrics.insertCommandMetric.sum /
metrics.insertCommandMetric.numOfCommands

/* « |
* Find Standard deviation
*/

Set temp = metrics.insertCommandMetric.sumSquares -
metrics.insertCommandMetric.sum *
metrics.insertCommandMetric.sum /
metrics.insertCommandMetric.numOfCommands

If temp < ZERO Then
/*
* Possible round-off may cause negative variance
*/
Set metrics.insertCommandMetric.avg MIN_TIME_VALUE
Set metrics.insertCommandMetric.deviation = MIN_TIME_VALUE

Else :
Set metries.deviation = sqrt(temp / metrics.numOfCommands
) .
EndIf
/*
* Calculate metrics for Query command
*/
/*
* Check for no samples in command metric
*/
If metrics.queryCommandMetric.numOfCommands == ZERO Then
Set metrics.queryCommandMetric.avg = MIN_TIME_VALUE
Set‘metrics.queryCommandMetric.deviation = MIN_TIME_VALUE
EndIf
/*
* Find Average
*/

A-97

Set metrics.queryCommandMetric.avg =
metrics.queryCommandMetric.sum /
metrics.queryCommandMetric.numOfCommands

/*
* Find Standard deviation
*/

Set temp = metrics.queryCommandMetric.sumSquares -
metrics.queryCommandMetric.sum *
metrics.queryCommandMetric.sum /
metrics.queryCommandMetric.numOfCommands

If temp < ZERO Then g

/* .
* Possible round-off may cause negative variance
*/

Set metrics.queryCommandMetric.avg

Set metrics.queryCommandMetric.deviation

MIN_TIME_VALUE
MIN_TIME_VALUE

Else :
Set metrics.queryCommandMetric.deviation = sqrt(temp / (
metries.queryCommandMetric.numOfCommands - 1))
EndIlf ‘
/*
* Calculate metrics for Delete command
*/ ‘
/*
* Check for no samples in command metric
*/ :
If metrics.deleteCommandMetric.numOfCommands == ZERO Then
Set metrics.deleteCommandMetric.avg = MIN_TIME_VALUE
Set metrics.deleteCommandMetric.deviation = MIN_TIME VALUE
EndIf
/*
* Find Average
*/

Set metrics.deleteCommandMetric.avg =
metrics.deleteCommandMetric.sum /
metrics.deleteCommandMetric.numOfCommands

/*
* Find Standard deviation
*/

Set temp = metrics.deleteCommandMetric.sumSquares -
metrics.deleteCommandMetric.sum *
metrics.deleteCommandMetric.sum /
metrics.deleteCommandMetric.numOfCommands

If temp < ZERO Then
/*
* Pogsible round-off may cause negative variance
*/
Set metrics.deleteCommandMetric.avg
Set metrics.deleteCommandMetric.deviation

MIN_TIME_ VALUE
MIN_TIME_VALUE

Else .
Set metrics.deleteCommandMetric.deviation = sqrt(temp / (
metrics.deleteCommandMetric.numOfCommands - 1))
EndIif
/*
* Done

A-98

*/

Return

A.13.2 initMetricsData

Name:
Input:
Output:
Return:

Description:

Calls:

initMetricsData

Metric structure, metrics

Metric structure, metrics

INIT_METRIC_SUCCESS, or

INIT METRIC_TIMING_ERROR

This routine initiazes the Metrics module by setting the appropriate values
and/or flags for later metric collection. The timing information for total
execution time, input time, and output time are set to the current system
time returned as timing marks for later processing. Note that the time()
system call might fail so a check is provided. Thisisn’ta fatal error in the
sense that neither the Database or Input & Output modules will fail, but all
metric information collected will be invalid. The time routine is checked
only in the initMetricsData routine and if all calls are successfull, the rest
of the application will assume success. This prevents unnecessary checks
and reduces the complexity caused by excess return checks for system
calls.

The individual command metric data are also initialized to either logical
values (number of commands, sum of command times, sum of squares of
command times) or to “highly unlikely” values (worst, best, avg,
deviation) which should be easily noticed if output.

The routine updateMetricsData uses the value of the lastCommand field to
determine which command metric to update. The first time through, there
is no command so an initial value of NONE is placed in the field. The
updateMetricsData should interpret this value so as not to update an
command metrics for that loop.

errorMessage()

getTime()

System:

Get Metric, metrics

Define Time,

/*

temp

* Setup timing marks for metric collection. If the system timing
* call fails, return an error to the calling routine. This is

* not necessarily fatal,; but it’s difficult to see how later

* metric info can be taken accurately if this call fails. This

* error should not affect the database or input/output routines.

*/
Call temp

getTime ()

If error occured taking the system time Then

/*

* Inform user of error and exit

A-99

*/
Call errorMessage(Unable to determine system timing info)
Return INIT _METRIC_TIMING_ERROR

EndIf

Set metrics.totalTime = temp
Set metrics.inputTime = temp
Set metrics.outputTime = temp

/*
* Set initial values for each command metric for insert, query,
* and delete. The statistical values for the worst, best,
* average, and standard deviation values are set to “highly
* unlikely” values which should be easily notlced if unchanged
* and output as a metric result.

*/

Set metrics.insertCommandMetric.numOfCommands =0

Set metrics.insertCommandMetric.sum = 0.0

Set metrics.insertCommandMetric.sumSquares = 0.0

Set metrics.insertCommandMetric.worst = MIN_TIME_VALUE
Set metrics.insertCommandMetric.best = MAX TIME_VALUE
Set metrics.insertCommandMetric.avg = MIN_TIME_VALUE
Set metrics.insertCommandMetric.deviation = MIN_TIME_VALUE
Set metrics.queryCommandMetric.numOfCommands =0

Set metrics.queryCommandMetric.sum = 0.0

Set metrics.queryCommandMetric.sumSquares = 0.0

Set metrics.queryCommandMetric.worst
Set metrics.queryCommandMetric.best
Set metrics.queryCommandMetric.avg

MIN_TIME VALUE
MAX_TIME_VALUE
MIN_TIME_VALUE

fl

Set metrics.queryCommandMetric.deviation = MIN_TIME_VALUE
Set metrics.deleteCommandMetric.numOfCommands =0

Set metrics.deleteCommandMetric.sum = 0.0

Set metrics.deleteCommandMetric.sumSquares = 0.0

Set metrics.deleteCommandMetric.worst
Set metrics.deleteCommandMetric.best MAX_TIME_VALUE
Set metrics.deleteCommandMetric.avg MIN_TIME_VALUE
Set metrics.deleteCommandMetric.deviation = MIN_TIME_VALUE
/* '

* The routine updateMetricsData expects the lastCommand field of

MIN_TIME VALUE

* the Metric structure to indicate which command metric should be
* updated. There is no update the first update, so set field to
* none which will be interpreted by the updateMetricsData routine
* as a “bye”.
*/

Set metrics.lastCommand = NONE

/*
* Done

*/

Return INIT_METRIC SUCCESS

A.13.3 setMetricsData

Name: setMetricsData
Input: Metric structure, metrics
enum CommandType, type

A-100

Output:
Return:
Description:

Calls:

metric structure, metrics

void

This routine sets two values for later metric collection. The first is
specific to the individual command being processed and sets the
lastTimeMark field for that command metric structure. The second is the
command type for later update which is stored in the lastCommand field
of the metrics structure. The routine does not require a return code since
no fatal error can occur. If a command type is passed which is not
recognized, it informs the user via th errorMessage routine.
errorMessage()

getTime()

System:

Get metric struct metrics
Get CommandType, type

/*
*/

* Set the 1astTimeMark and 1astCommand values

If type == INSERT Then E

Set metrics.insertCommandMetric.lastTimeMark = getTime ()
Set metrics.lastCommand = INSERT ‘
Else If type == QUERY Then .
Set metrics.queryCommandMetric.lastTimeMark = getTime ()
Set metrics.lastCommand = QUERY :
Else If type == DELETE Then ;
Set metrics.deleteCommandMetric.lastTimeMark = getTime ()
Set metrics.lastCommand = DELETE
Else
/*
* Unknown command type. Non-fatal error which simply
causes
* no timing info to be collected for this command
* processing.
*/ ’
Call errorMessage(Unknown command type to set)
EndIf
/*
* Done
*/
Return
Test:

A.13.4 updateMetricsData

Name:
Input:

Output:
Return:

updateMetricsData

Metric struct, metrics
enum CommandType, type
Metric struct, metrics

void

A-101

Description: Determine time for command to complete via stored time in structure and
current system time. The specific command to update is determined by
the input command type. Note that the specific metric command structure
must have the lastTimeMark element correctly stored. Update internal
variables of sum, sumSquares, and numOfCommands of the specified
command metric structure for later metric calculations.

The routine determines the time to complete command by calling the
system for the current wall clock time and subtracting the time mark set in
the metric structure. If a negative time difference is found, the value is
ignored and the metric command structure is not updated. The update
consists of incrementing the total number of samples for this command
type, the sum of the time differences up to this sample, the sum of the
squares of the time differences up to this sample, and the best (fastest) and
worst (slowest) time difference. Note that care must be taken for the
implementation to insure that overflow conditions do not arise for the sum
of the time differences and the sum of the square of the time differences.
The implementation of the timing mechanism for the specific Time type
will determine the steps necessary to prevent this error condition.

The commands Insert, Query, and Delete are the only commands which
are updated. A command value of NONE, INVALID, or an unknown
command type is ignored. This prevents the corruption of valid data
stored for the Insert, Query, or Delete metrics by updating metric data for
“failed” commands, i.e., commands which did not function properly but
do not cause a fatal error which halts execution, or commands which can’t
be read from input correctly, etc.

Calls: errorMessage()
getTime()
System:

Get Metric struct, metrics
Get enum CommandType, type
Define Time, commandTime

/*
* Find current system time
*/
Call commandTime = getTime ()
/*
* Switch on command type to update
*/
If type == INSERT Then
/*
* Determine time of command processing
*/

Set commandTime = commandTime -
metrics.insertCommandMetric.lastTimeMark
If commandTime < ZERO Then
Call errorMessage(The timing mark for command does
not appear to be properly set - the last time mark

appears to be more recent then the current time)
Else

A-102

EndIif

/*
* Update stored best and worst values
*
/ ;
If commandTime < metrics.insertCommandMetric.best
Then
Set metrics.insertCommandMetric.best =
commandTime
EndIf
If commandTime > metrics.insertCommandMetric.worst
Then :
Set metrics.insertCommandMetric.worst =
~commandTime
EndIf
/'k
* Update sums: Caution should be taken to prevent
* overflow conditions. '
*
Set metrics.insertCommandMetric.sum =
metrics.insertCommandMetric.sum + commandTime
Set metrics.insertCommandMetric.sumSquares. =
metrics.insertCommandMetric.sumSquares +
commandTime * commandTime
Set metrics.insertCommandMetric.numOfCommands =
metrics.insertCommandMetric.numOfCommands + 1

Else If type == QUERY Then

/*

* Determine time of command processing

*/

Set commandTime = commandTime -
metrics.queryCommandMetric.lastTimeMark
If commandTime < ZERO Then

Else

Call errorMessage(The timing mark for command does
not appear to be properly set)

/*
* Update stored best and worst values
*/ .
If commandTime < metrics.queryCommandMetric.best Then
Set metrics.queryCommandMetric.best =
commandTime
EndIlf
If commandTime > metrics.gqueryCommandMetric.worst
Then
Set metrics.queryCommandMetric.worst =
commandTime
EndIf
/*
* Update sums: Caution should be taken to prevent
* overflow conditions.
*/
Set metrics.queryCommandMetric.sum =
metrics.queryCommandMetric.sum + commandTime
Set metrics.queryCommandMetric.sumSquares =
metrics.queryCommandMetric.sumSquares +
commandTime * commandTime

Set metrics.queryCommandMetric.numOfCommands =
metrics.queryCommandMetric.numOfCommands + 1
EndIf '
Else If type == DELETE Then
/*
* Determine time of command processing
*
/
Set commandTime = commandTime -
metrics.deleteCommandMetric.lastTimeMark
If commandTime < ZERO Then : .
Call errorMessage(The timing mark for command does
not appear to be properly set)

Else
/* ‘
* Update stored best and worst values
*/ : : N
If commandTime < metrics.deleteCommandMetric.best
Then
Set metrics.deleteCommandMetric.best =
commandTime :
BEndIf
If commandTime > metrics.deleteCommandMetric.worst
Then :
Set metrics.deleteCommandMetric.worst =
commandTime
EndIf
/* '

* Update sums: Caution should be taken to prevent
* overflow conditions.
*/
Set metrics.deleteCommandMetric.sum = .
metrics.deleteCommandMetric.sum + commandTime
Set metrics.deleteCommandMetric.sumSquares =
metrics.deleteCommandMetric.sumSquares +
commandTime * commandTime
Set metrics.deleteCommandMetric.numOfCommands =
metrics.deleteCommandMetric.numOfCommands + 1

Appendix B: DIS Benchmark Suite: Image Understanding Software Design

B. DESIGN DESCRIPTION

This document describes the baseline software design of the Image Understanding benchmark
for the DIS Benchmark Suite. The document is separated into two parts where the first part,
Design Description, presents the design approach at a high-level, describes various
implementation decisions, and explains the interaction between the individual function
descriptions. The second part, Pseudo-code, presents the low-level descriptions of the individual
routines and methods which make up the baseline application.

The initial input to and the final output from the Image Understanding benchmark is fixed as
specified in [AAEC-1]. Any intermediate results or design choices are picked as an example of
only one of many possible. Anyone implementing the benchmark is free to design the internals
differently and is even encouraged to, especially to gain accuracy or speed. The implementation
can be modified, but the functionality of the benchmark must remain intact and will be tested by
validating the final output.

B.1 GOALS
Several goals were established and followed for this design:

e Accurately follow the Image Understanding specification as described in the DIS Benchmark
Suite [AAEC-1].

e Strike a balance between easily understandable source code and optimized source code.
Optimization usually has the effect of making software implementation more complex or
more difficult to immediately understand. However, the baseline design should represent a
“reasonable” image understanding application and the baseline performance figures should be
comparable to a real application which indicates some optimization. The choice of whether
to use a specific optimization technique is determined by the amount of performance
increase versus the degradation of the general user to determine the underlying process.

e Provide a complete application which is reasonably robust for a general execution. The
application should handle generic errors (unable to locate input files, memory allocation
failures, etc.) gracefully, and return control to calling process without an abrupt failure. The
application should not be expected to handle hardware specific or special errors unique to a
platform or hardware configuration. Also, when errors would require a large amount of code
to detect and/or fix, the design reverts to the primary goal of optimization/understandability.

e Provide baseline source code which is relatively easy to understand and modify to a particular
implementation approach. The design should allow the alteration of the underlying image
understanding algorithms without causing a major shift in the design paradigm.

e Follow the DIS Benchmark C Style Guide [AAEC-2] for the development phase of the

baseline source code. The style guide lists several aspects of the source code which can be
incorporated into the design segment.

B-1

B.2 CONVENTIONS

Several conventions are used in this document to clarify the design and implementation of
the benchmark.

¢ A function name will be italicized when referenced within a text setting.
e Structures are in bold type when referenced within a text setting.
e Control flow in diagrams is denoted by arrows on solid lines.

¢ Subroutines are denoted by “bold” rectanguiar boxes.
B.3 OVERVIEW

The Image Understanding Sequence defined in [AAEC-1], is duplicated in Figure B-1, and
consists of the following: a morphological filter component, a region of interest (ROI) selection
component, and a feature extraction component. The morphological filter component provides a
spatial filter to remove background clutter in the image. Next, the ROI selection component
performs a thresholding to determine target pixels, groups these pixels into ROIs, and selects a
subset of ROIs based on specific selection logic. Finally, the feature extraction component
operates over and computes features for these selected ROIs.

thresholdLevel
minArea
maxRatio distanceShort

K selectNumber distanceL ong

¢ ¢ regions

V /4 0 features
— | Morphological —» ROl l————-p Feature —Pp
Filter Selection —p Extraction

Figure B-1: Image Understanding Sequence

The input required by the sequence is a set of parameters, an image, ¥, and a kernel, K. The
first step in the sequence is a spatial morphological filter component generating image W. Then,
the ROI selection component performs a thresholding and groups connected pixels into ROIs (or
targets) contained in image W. -This component then computes initial features for each ROI in
image W, and selects a subset of ROIs based on the values of these features. These selected ROIs
are stored in object image, O, and the initial features for each selected ROI are included in list,
regions. Lastly, the feature extraction component computes additional features for the selected
ROIs. The output at the end of the sequence is a feature list, features, with both sets of features
computed for each selected ROI. Additional information and details regarding the sequence are
in [AAEC-1].

B-2

The output O does not need to be an image, but does need to contain enough information so
that each selected ROI is differentiated from other ROIs, and so each pixel within an ROI can be
referenced. In the baseline implementation of the benchmark, this is achieved by having O be an
image using the same memory as the intermediate filtered image W. The depth of the values in O

is driven by the maximum number of ROIs possible ((2'® —2) as discussed in [AAEC-1]). Thus
this implementation reuses the memory for the filtered image W to store the labeled image O.

Others implementing the benchmark are free to design O to be something other than an
image as long as the utility of O does not change. For example, instead of a complete image
containing all the ROIs labeled with a distinct index, a subimage or chip could be extracted for
each ROI where the chip boundaries could be the smallest rectangular region that would contain
that ROL Then a method of obtaining the location of the ROI relative the filtered image # must
also be retained (i.e., an offset to place the chip over the proper location in W). In this manner,
there would be selectNumber chips and offsets to specify the selected ROIs providing a
convenient mechanism to parallelize the process. As another example, an ROI may be specified
as a list of pixel locations where an ROI with twenty-five pixels would have a list of twenty-five
pixel locations relative to the pixel coordinates of W. Then, output O would not be an image at
all, but would be a list of ROIs where each element on the list is also a list (of pixel values for
that particular ROI). The implementation chosen for the baseline, where O is a labeled image,
was chosen to simplify the presentation.

A functional hierarchy for the baseline design is provided in Figure B-2. Each function is
represented by a box and is connected in the hierarchy by a dotted arrow starting at the calling
function and ending at the function called. Input parameters and intermediate data that is named
in Figure B-1 is also included with a solid arrow from the function that creates or reads in the data
to the function(s) that use the data. The transposeFlag parameter, discussed below (but not
included in Figure B-1), is displayed in the functional hierarchy with a dashed arrow. This
parameter is set within the readInput function and used within the writeOutput function.

B-3

r- adlnput [
. > readlnpu N
]
! K
: v ,
]
:"'" Lt 9| filterlmage 14—
l A
: W
X thresholdLevel
: minArea
Image I maxRaio
Understanding [~ : selectNumber
. t
main N
L] __’ selectRegions (q—
!
' -
E regions
: distanceS hort
X distancel ong
}
' P
REY: b p| extractFeatures ‘g—I
Function call E :
_—b)
Internal data flow : lfeatures
[-)
Additional data flow Lo

writeQutput transposeF. IE

Figure B-2;: Function Overview

This baseline implementation of the sequence has been designed favoring unit stride along a
row (or imagery stored in row dominant order). Since the filtering component of the sequence
uses a kernel to define an area around the pixel being processed, more than one row of the image
is accessed to process a single pixel. Furthermore, the filtering component of the sequence is
implemented to perform calculations in-place which requires some temporary storage. For an
image with X columns by Y rows and a kernel with M columns and N rows, this temporary
buffer size must be at least X*N/2 pixel-sized memory units. Consider the case when the image
is a long thin rectangular strip where X is much larger than Y. Then, the amount of memory
required for the temporary buffer, X*N/2, can be significant. What if it were able to lower that
amount to Y*N/2? Then the savings in the amount of cache required would be great. If it were
possible to transpose the image before processing it, this saving could be realized.

Analysis of the sequence shows that transposing the image will not affect the output from
the sequence as long as: 1) the kernel is also transposed before the filtering component, and 2) the
features dependent on the orientation of the coordinate system — centroid, GLCM entropy, and
GLCM energy — are changed so that they reflect values that would be obtained if the transpose
had not occurred. Fortunately, “transposing” these features after the fact is simple. The centroid
row and column values need to be switched and the directions for the GLCM descriptors are not

B-4

affected or can be paired so that a simple switch will work (see Section B.4.1 for more details).
Since it is possible to generate accurate output from the process executed on a transposed image,
the baseline implementation invokes an image transpose to minimize the temporary memory
requirements. This method has an additional advantage of minimizing the cache required.
Therefore, upon input, if the number of columns is larger than the number of rows, then the image
is transposed. A transposeFlag parameter will be set to reflect that the image has been
transposed. If the transpose has occurred, then the kernel is also transposed. In addition, the
output function, writeOutput, must “transpose” the output to obtain values as if the transpose had
not been done.

The only function which does not have a calling function in the functional hierarchy shown
in Figure B-2, is the main function whose calling function is the user or system. Note that,
although an attempt was made to prevent lines in the diagrams from overlapping, this was not
avoidable in all circumstances. However, the correct hierarchy can be determined with logical
reasoning. This hierarchy represents a top level flow, where the major functions are included at
this level. Four major modules have been designed to implement this benchmark: Input &
Output, Filtering, Region Selection, and Feature Extraction. The Input
& Output module, which controls the flow of the program including input and output, contains
the main program along with the routines readInput and writeOutput. The Filtering module
implements the Morphological Filtering component of the sequence with function filterImage.
The Region Selection module implements the ROI Selection component of the sequence
using function selectRegions. The final Feature Extraction module, implements the
Feature Extraction component of the sequence with function extractFeatures. Details of the
functions used for each module, as well as any supporting functions, are included in the sections
below.

All input and output is isolated to the Input & Output module to allow ease in
installing the sequence onto multiple hardware platforms. The metrics for the sequence, which
provide timing information for the baseline performance, are also included in this module.

One of the goals for the Image Understanding software design is to produce a robust
application which will gracefully handle most errors. The strategy by which these errors are
handled is applied uniformly in the application. The primary approach consists of the return of
integer codes from each routine which can fail. A routine will have a successful return code,
indicating that the specific task required of the routine was accomplished, or one or more error
return codes which indicate the specific error that occurred. The return code indicates the state of
the process and any other output data and not necessarily that no error occurred during the
execution of the routine. For example, if an error occurs during a subroutine but the subroutine
recovers, a successful code is returned to the calling process indicating that all output data and the
current execution thread can proceed normally. This approach implies several characteristics for
each routine:

e Each routine will handle all “local” errors. A local error is one caused directly by the system,
e.g., opening files, reading/writing to/from a stream, etc., or by calls to other functional
subroutines. This does not indicate that a routine will abort the execution thread, rather the
routine will return an appropriate error code to the calling function.

e Each routine will “clean-up” before the return. If an error occurred, any memory allocated
during the execution of the routine will be unallocated.

B-5

The only exceptions to the return code approach for the baseline design is for system routines
which prescribe a different method and for baseline routines which closely mimic these system
calls. The best examples are the memory allocation functions which return a pointer to the
allocated memory or NULL if an error occurred. Each routine which can fail, lists the success
and error return codes as part of the function description. A complete listing of the return codes
for the baseline application is given in the Section B.6.

All error and/or unusual conditions which arise during execution of the application will have
a descriptive comment placed in the error stream preceded by the names of the routines where the
condition occurred, i.e., an error occurring within subroutine B which was called by subroutine 4
would have the message,

A> B> error message

where each subroutine name and the actual message are separated by “>“. The message system is
accomplished by two routines: errorMessage and flushErrorMessage. A local buffer is kept by
the routines to allow storage of the message and routine names before flushing and the size of the
buffer is set such that exceeding the limit is extremely rare. The extreme case when the
prepended message is larger than the buffer size will cause the errorMessage routine to
immediately flush the current error buffer along with a message indicating the premature flush.
The errorMessage routine inputs two parameters: (1) A character string which should either
contain a text representation of the condition that occurred or the name of a routine which should
be prepended to the current message, (2) An boolean value indicating the the first parameter
message should replace the current error buffer contents, or the first parameter message should be
prepended to the current error buffer contents. The flushErrorMessage routine takes no
parameters as input and simply places the current contents of the error buffer into the standard
error stream. A call to the flushErrorMessage does not clear the buffer contents.

B.4 IMAGE UNDERSTANDING

The image understanding sequence is composed of three components: a morphological filter
component (Filtering), an ROI selection component (Region Selection), and a feature
extraction component (Feature Extraction). Modules that implement these components
are referenced in parenthesis following the corresponding component name. The algorithms and
descriptions for the components are presented in the DIS Benchmark Suite]AAEC-1] document
and are not repeated here. In the design of this baseline, it is assumed that the input images will
be very large in size and that the kernels will be small relative to the image size. An additional
module, Input & Output, consists of: the mainline (main), the input and output routines,
readInput and writeOutput, the error handling routines, and the routines calculating metrics. Any
interface required by the sequence with peripheral devices is localized within this module.

These four modules are grouped for convenience and are not necessarily isolated from each other.
There are data structures and functions that are shared among more than one module. This
overlap for each module is discussed in the sections below.

B.4.1 Input & OQutput Module

This module controls all input and output for the sequence and contains the mainline,
main, as well as supporting functions. Input to this module is a single input file containing all
inputs required by the sequence. Output from this module consists of three files, an output file, a
metric file, and an error file. The output file contains an ASCII table of feature values for each

selected ROI, the metric file contains metrics for the evaluating performance of the
implementation, and the error file contains ASCII messages pertaining to any warnings and/or
errors that occurred during execution of the sequence. Three of these files (input, output, and
metric) can be specified at runtime to be disk files or can default to be the streams standard input,
standard output, and standard error. The error file will always be defined to go to standard error.
The format for the input and output file is specified in the DIS Benchmark Suite document

[AAEC-1].

A function hierarchy is depicted below in Figure B-3. All the functions contained within
the Input & Output module are included. Functions contained in other modules, but called
within this module are also included and are shaded to signify that they are functions called
outside of the module. Both dotted and solid arrows are used starting at the calling function and
ending at the function called. Two types of arrows were used only to make the path of
overlapping arrows clear. There is no difference between a solid or a dotted arrow. The calls to
the other modules highest level functions (filterImage, selectRegions, and extractFeatures) were
left at the highest level only. The lower level functions for these modules are discussed in the
sections covering those particular modules.

B-7

createUCharlmage

adUCharl)
:__> readInput readUCharImage freeUCharlmage
L}
'
ad Int)]
: readShortintimage createS hortIntimage
b m e e e e e e emmmmmmmmmemoiiooo--
'
'
: freeShortIntImage
3
]
:--b errorMessage
|
L}
L-p systemTime
!
main ._E
r-» filterlmage -
]
1 . : RN -
f" . selectRegions
: -
]
L} .
gl extractFeatures
: ' -» deletedlias
! @ . . o s L - -
“=® writeOutput [W\deleteFirstFeature] ™| deleteObject [|
PR : : ; L,
removeObject

Figure B-3: Input & Output Module Function Hierarchy

All input to the sequence is handled within the routine readInput. This includes deciding
whether to transpose the input image as well as checking the ranges of the input parameters.
When the dimensions of the input image ¥ are read in, if the number of columns is larger than the
number of rows, then the image data is stored transposed as it is being read in from input. Thus,
although the image is provided in row dominant order, the image is stored in column dominant
order. Transposing while reading in the image V' is more efficient (for memory access and
usage) than reading in the image in row dominant order and then transposing it into column
dominant order. The internal parameter, transposeFlag, is set to TRUE if this transpose occurs so
that the kernel, K, is also transposed upon input. If the number of columns of image ¥ is not

B-8

larger than the number of rows, the image ¥ and the kernel K are read in and stored in row
dominant order, as provided, and the transposeFlag is set to FALSE.

The input parameters are checked for validity within readInput to catch invalid values as
early as possible. The validation tests for the input kernel K are: 1) the kernel is smaller than the
input image ¥ (in each dimension), 2) the kernel has dimensions that are odd, and 3) kernel has at
least one non-zero pixel value (defining the shape of the kernel).

The other input parameters are checked to ensure that: 1) mindrea is greater than or equal
to zero, 2) maxRatio is greater than zero, 3) selectNumber, distanceShort, and distanceLong are
positive non-zero values, 4) mindrea < total area of input image V, 5) distanceShort and
distanceLong are both less than each dimension of input image V, and 6)selectNumber < total

number of possible objects (limited to (2'® —2), see Section B.3).

Once the input routine readInput accepts the parameters, these values are not checked
and are assumed to be valid in lower level routines. If there is an invalid input in the input file,
readlnput returns an error code that is interpreted by the main program and the sequence
execution halts.

The output for the sequence consists of writing a table of the features calculated for each
selected ROI in the features list and is handled in the routine writeOutput. If the transposeF lag is
set to TRUE, then the feature values are “transposed” to reflect features that are valid for input
images that are NOT transposed. The flag is set when the input image is transposed before
applying the image understanding sequence. Therefore the output must be changed to obtain the
values that correspond to applying the sequence to an input image not transposed. This entails a
simple switching of values. The features calculated are symmetric with respect to a transpose -
the centroid column value becomes the centroid row value (and the centroid row value becomes
the centroid column value). When the centroid column and row values are switched, they
represent the centroid that would have been derived from the image if the image had NOT been
transposed. The GLCM descriptor features have a similar pairing because of the relationship
between the directions chosen. For these features, if the transpose has occurred, the 0 degree and
the 90 degree descriptor values are switched. The GLCM descriptor values for 45 degrees and
135 degrees are unaffected by the transpose. A 45 degree vector is along the axis of the transpose
and remains 45 degrees. A 135 degree vector transposed becomes a 315 degree vector, which is
along the same ray as 135, but in the opposite direction. Since the GLCM descriptors are being
calculated using sum and difference histograms that are equivalent for directions 180 degrees
apart, no change is required for the 135 degree descriptors. Once these swaps are performed, the
full set of features represents values for an image that is not transposed. The other features —
area, perimeter, mean, and variance — are not affected by the transposition of the input image.
Then, if the transposeFlag is set to TRUE, the features are “transposed” (or switched with their
matching pair) before output is written. If the transposeFlag is set to FALSE, the features that
are derived are written out. Either way, the features written to the output file represent features
derived on the input image that has not been transposed.

B.4.2 Filtering Module

The Filtering module implements the morphological filter component of the sequence
and can be accessed through routine filterImage as shown in Figure B-2. The inputs to this
module are an input image ¥ and a kernel K. From these inputs, the filter is applied which
generates a filtered output image, #. The mathematical definition for this filter is given in the

specification and repeated here for convenience. Define the morphological operations, erosion
() and dilation (I) as follows:

[V °K] = MIN[v(x+m, y+n)] m,n €Ros(K), k(m,n) =0 (B.4.2.1a)
[V I K] = MAX[v(x+m, y+n)] m,n €Ros(K), k(m,n) =0 (B.4.2.1b)

where each output pixel is computed at location (x, y) for a morphological kernel, K, which has a
local region of support (Ros) that defines its geometric filtering properties with M columns and N
rows. For these primitive morphological operations, MAX and MIN are computed locally for
every pixel. Only nearby pixels are required to compute output pixels, specifically for the pixels
in X that are non-zero.

For this benchmark, the morphological filter is defined as follows. As shown in Figure
B-1, Vis the input image and W is the output, where

W=vV-[V 'K FK] (B.4.2.2)

Since the input image V is used as input for components following this one, it is
considered to be provided in a READONLY buffer. This module must be given, in addition to
the input image V, and the kernel K, an output buffer for image W. The implementation of the
filter defined in Equation (B.4.2.2) contains two steps and is designed to require minimal extra
memory than what is provided by the calling function.

A function hierarchy for the Filtering module is shown in Figure B-4 below. The filtering
process is broken down into two steps. The erosion is performed in function erodelmage, and the
dilation is performed at the same time as the subtraction in function dilateAndSubtract.

r----p| erodelmage

fliterlmage | ..

L - - - - p| dilateAndSubtract

Figure B-4: Filtering Module Function Hierarchy

The function erodelmage performs the first step where the erosion of ¥V is computed and
the result is stored into the output buffer provided to store . Kernel processes require two major
looping constructs, one going over the image and one going over the kernel. When care is taken
to chose the inner and outer loops, processing speed can be enhanced. For morphological
calculations, any kernel pixel or image pixel that has a zero value requires NO OPeration at all.
Since the input contains real data with short integer precision, the probability of it containing

many values equal to zero is small. The kernel, however, is of type unsigned char and is highly
likely have more than one zero value. To take advantage of these NOOPs and increase
processing speed, loop over the kernel first and then over the image while calculating the erosion.
Then, for any kernel pixel that is zero, the input image does not need to be referenced at all and
processing can jump to the next kernel pixel! If the loops were in the reverse order, every pixel in
the image would be accessed before discovering that a kernel pixel with a zero value required no
operation. The erosion is not fully calculated until the entire outer loop over the kernel is
complete. For the simple erosion, in a trade-off for speed versus memory, an implementation
favoring speed wins.

After the erosion is calculated, the second step is implemented by function
dilateAndSubtract. Here the dilation and subtraction are computed using a temporary buffer (half
the number of rows of K times the number of columns of V) so that the values can be calculated
and stored back into the output buffer for . Since this step performs a calculation in-place (with
the use of the temporary buffer for the overhead processing required to allow an in-place
calculation) the same optimization in loop order for the erosion cannot be used. When the
calculations are in-place, the entire computation must be performed for a single pixel before
continuing onto the next input pixel. For this in-memory calculation on images that are very
large, in a trade-off for speed versus memory, an implementation favoring speed at the expense of
memory loses. Since the input images may be very large, it is more important to minimize
memory in this step than to increase speed. However, for the first step, where you are guaranteed
to have an input buffer for ¥ and an output buffer for W, the optimization for speed wins (the
added memory is not expensive because you are guaranteed to have it).

As discussed in Section B.3, this buffering of half the kernels length times the width of
the image favors an image with a width smaller than the length. The baseline implementation
exploits this advantage by transposing the input image (and the kernel) whenever the input image
has more pixel columns than pixel rows.

This design is not optimal for every data set possible or for many hardware
configurations. The assumptions are that the input image will be large in size and the kernels
relatively small and that the hardware has limited cache and no parallelization capabilities. Then,
on average, these implementation enhancements will increase the speed of execution of the
filtering module.

B.4.3 Region Selection Module

The Region Selection module implements the ROI Selection component and
requires for input: images ¥ and W, along with parameters: thresholdLevel, minArea, maxRatio,
and selectNumber. The output of this module is an object image, O and a list of regions in the
image, regions (containing initial feature values). The internal parameter, image O, was chosen
to be a labeled image in this implementation (see Section B.3). First the threshold is applied to
the filtered image W and pixels passing the threshold are considered on target and grouped
together into connected regions defined as ROIs. Then, initial features for each ROI in image W
are computed and selection logic is used to choose a subset of these ROIs. Finally, the selected
ROIs are labeled and stored in object image O, and the corresponding initial features are included
in the list of ROI objects, regions. The highest level routine in this module is selectRegions,
which provides an interface with the main line as shown in Figure B-2. Since the intermediate
filtered image W is no longer needed in the sequence, the baseline implementation reuses this
memory to store the labeled image O. Having the image W and image O coincide in memory
saves the process a memory block the size required for an intermediate image.

Many algorithms exist to group neighboring pixels into a connected region. Two types of
these connected component algorithms were considered for implementation. One uses the seed
fill approach by [Heckbert] and the other is a raster scan approach described by [Lumia]. The
seed fill algorithm takes a seed point and connects neighbors with the same value as the seed
point to a given new value. A stack is used to store neighboring pixels of interest and processing
continues until the stack is empty. This algorithm is often useful in paint utilities and was not
used here because of the irregular memory access required and the possibility of the stack
growing unmanageable. However, this algorithm, as well as others that exist, should be
considered as a viable alternative for others who implement this benchmark.

The raster scan approach described in [Lumia] contains three variations. The first variation
traverses the image line by line assigning pixels to objects and updating an equivalence table that
keeps track of objects that have been merged. As the image is traversed and distinct labels are
assigned to pixels to represent distinct objects, it is possible for two separate objects to become
connected. Then these two connected objects are really one object and need to be merged into
one object. This is achieved by associating multiple labels to one object, where one of these
labels will be defined as the label for that object and the other labels will be aliases for that object.
Therefore, when the end of the image is processed, each distinct object is labeled and may have
any number of aliases associated to it. These aliases are stored on an equivalence table defining
which labels go to which object. Thus, for large images with complex objects, the size of the
equivalence table may grow to an unmanageable size. The second raster scan variation has no
equivalence table and iterates on the image in two passes: one from top to bottom and the other
from bottom to top. While the image is traversed a flag is set if any objects were merged. The
iterations continue until an iteration occurs that does not have the flag set (where no objects were
merged). This variation requires an undetermined number of passes through the image, which
may be very large. The third raster scan variation is a hybrid of the other two where the image is
traversed twice: once top to bottom and then from bottom to top. For each image line, an
equivalence table is kept to keep track of merged objects (which is used to relabel the objects).
While each image line is processed, the equivalence table keeps track of merged objects. At the
end of the image line, if any objects have been merged, the merged pixels are relabeled using the
data on the equivalence table. This method has a smaller equivalence table and a predetermined
number of passes through the image, but may require revisiting many pixels in order to relabel
objects.

For this benchmark, assuming that the targets (or objects) to be labeled are never going to
be very large compared to image size or very intricate in terms of shape, the first raster scan
approach has been implemented. The size of the equivalence table, however, is bounded and a
relabeling procedure is performed whenever the limits of the table are reached.

The algorithm used, for the baseline implementation, to group neighboring pixels into
regions is described as follows. As the image W is traversed, any pixel value larger than
thresholdLevel is considered a target pixel. The image is traversed from the top row to the
bottom row and from the left column to the right column. The neighbors of a target pixel (above
and to the left — or neighboring pixels that have already been processed) are checked to see if any
are labeled. If none of the neighbors are labeled, then the target pixel represents a new object and
a new object label is used. If only one neighbor is labeled, then label the target pixel with the
same label. If more than one neighbor has been labeled: if they are labeled with the same label,
label the target pixel with that label; if they are labeled with different labels, then use the label
from one neighbor while insuring that an alias equal to the labels from the other neighbors exist
in the table (merging objects as required). The image is traversed once, processing each pixel one
at a time until all the pixels have been processed and assigned a label.

This implementation does not allow an object pixel to be on the outer shell (one pixel in
width) of the image. Furthermore, the pixels in this outer shell are disqualified as target pixels
and are explicitly set to the background value. Since the filtering module, which precedes the
region definition, contains a two-step kernel process, unless the kernel is one pixel wide, it is
guaranteed that the image will have a border of undefined data (set to zero) greater than one pixel.
Thus, when the image is traversed to group neighboring pixels, a faster single looping construct
can be used rather than the slower traditional double looping construct (one for rows and one for
columns). And since the outer shell will never have a target pixel, when neighboring pixels of a
target pixel (not on the outer shell) are accessed, special cases at the boundary are avoided.

Whenever a new label is assigned to a target pixel, an object is added to the list regions and
is assigned that label. The structure for this object, ObjectEntry shown in Table B-1, is used to
store information about the object represented by that label. Supporting structures, AliasEntry,
BoundingBox, Point, and SomeFeatures, are shown in Table B-2 through Table B-5. The
AliasEntry structure is used to make the alias list for a given object. Values defining a bounding
box around the object are stored in the BoundingBox structure (with Point structures as
members), and partial initial feature calculations for the object are kept in the SomeFeatures
structure.

Table B-1: ObjectEntry Structure Definition

type specifier member name comment

ObjectEntry *nextObject pointer to next object
ObjectEntry *lastObject pointer to last object
AliasEntry *aliasList pointer to alias list
ShortInt labelValue label value

BoundingBox box bounding box around ROI
Float rankMetric ranking metric
SomeFeatures initFeatures initial feature structure

Table B-2: AliasEntry Structure Definition

type specifier member name comment
AliasEntry *nextAlias pointer to next alias
ShortInt aliasLabel alias label value

B-13

Table B-3: BoundingBox Structure Definition

type specifier member name comment
Point upperLeft upper left point of bounding box
Point lowerRight lower right point of bounding box
Table B-4: Point Structure Definition
type specifier member name comment
Int column column coordinate of point
Int row row coordinate of point

Table B-5: SomeFeatures Structure Definition

type specifier member name comment

Float centroidColumn | centroid column feature
Float centroidRow centroid row feature

Int area area feature

Int perimeter perimeter feature
Double mean mean feature

Double variance variance feature

The initial features are not dependent on spatial relationships between pixels within the
same object (or ROI) and can be calculated incrementally. Thus, as each target pixel is visited
and assigned a label, its contribution to the features is calculated and stored on the ObjectEntry
structure. The centroid, mean, and variance incremental values need to be normalized once all of
the pixels contributing to an object have been visited.

The output of this module, regions, is list of objects or a linked list of ObjectEntry
structures. This linked list of objects may contain a linked list of aliases for each object using the
AliasEntry structure. The label value associated to the object, a bounding box around the object,
initial features for the object, and a ranking metric (used to rank the objects) completes the
members on an ObjectEntry structure. The structure used to store the initial features,
SomeFeatures, is used to store the incremental values composing the feature until the entire
object is defined. These incremental features are changed (consisting of a normalization where
appropriate) to represent the features defined in the specification — centroid, area, perimeter,
mean, and variance.

If the features were not calculated incrementally, then the ROIs must be traversed after
grouping pixels into ROIs to calculate the features. This would require multiple passes of the
image, once to segment the pixels, and once to calculate the features. Thus, incremental
calculation eliminates the need for multiple passes and increases the speed of the process.

An object entry link is formed when more than one object is found in the image where
each entry on the list is a distinct object in the image. Whenever two objects are found to be
connected, they are merged (associated together where one represents an alias of the other). This
is achieved by deleting one of the merging objects from the object list and creating an alias with
the same label as the deleted object onto the alias list for the other merging object. The list
regions is a linked list of linked lists. One type of link is an object link and the other is an alias
link. While the image is being traversed and the ROISs are being connected, many objects may be
merged together. Each time a merge takes place, an entry is deleted from the object list and an
alias with the same label is added to the appropriate alias list keeping track of these connections.
The bounding box definition and the initial feature calculations for each object are also combined
before the object is deleted from the object list and the alias is placed on the alias list. This
entails consolidating information on the ObjectEntry structures or merging the statistics of the
two objects to create statistics representative of the merged object. Once all the pixels in the
image have been assigned to an ROI, then a final computation step is performed. This '
consolidation step is required to normalize the centroid, mean, and variance since it is now
possible to calculate the total number of pixels in an ROL The area feature does not require the
normalization step. This consolidation step is also used to prune out objects that do not satisfy
the criteria driven by minArea and maxRatio. Then the objects can be ranked in order so that the
selectNumber objects with the highest values for the ranking metric (mean*area) will be retained.
At the end of this module, regions contains a list of objects where each entry on the list represents
an ROI that passes the all of the selection criteria set. The members of the ObjectEntry structure
contain for each ROI: 1) the labels used in image O to label the ROI (one label plus any number
of alias labels), 2) the bounding box around the ROI, 3) initial features centroid, area, perimeter,
mean, and variance, and 4) the ranking metric (mean *area) to be used when the ranking selection
is performed.

B-15

A function hierarchy for the Region Selection module is shown in Figure B-5
below. Functions are represented by bold rectangular boxes with their names written in bold italic
inside the box. Function boxes that have a striped diagonal patterned background denote
functions that appear more than once in the flow diagram near the functions that call them (drawn
more than once for clarity).

o > addObject [~ 77 > createQObject
}
[}
' ~ - phldeleredliasy
) ?ﬁ\\\l\\\m‘c\)ﬁ\\w i
F==® updateObject . -

]
: A :
1 |

-pb blest:
! createdlias : L - plremevetibrect:
) A :
[} 1 1
!
1 . r- ’. .
selectRegions | _ _ ," --p findConnection | __ ! mergeObject | _ _ _ > ‘

I X findObject
\ memss=sssss----- >
)
]
E" ==®» getlabel [~ NN
L
: A
! 1
]
! computeFeatures
r == B TP -~ D deliObeen
) r==
] } T
: I A 4
) }
«--p| selectSubset [~ Jemovetbiect:

Figure B-5: Select Regions Module Function Hierarchy

The outputs from this module are the object labeled image O and object list regions.
These two parameters define the shape and location of each object and store the initial features
for each object. It is necessary to retain the shape and location of the object to be used later in the
Feature Extraction module where additional features for the object are calculated. These
added features are not calculated here because: 1) they are numerous (there are sixteen of them),
2) they are computationally expensive, 3) they require spatial integrity within the object so that
they can not be incrementally computed, and 4) the additional features do not need to be
computed on all the objects found in this module (objects that are culled using the selection
criteria do not need to have additional features calculated).

A flow diagram of the highest level function in the Select Regions module,
select-Regions, is depicted in Figure B-6 below. Functions are represented by bold rectangular
boxes with their names written in bold italic inside the box. Function boxes that have a striped
diagonal patterned background denote functions that appear more than once in the flow diagram

B-16

near the functions that call them (drawn more than once for clarity). Solid arrows show the flow
within the function and dotted arrows show function calls from functions called within

selectRegions.

A list of each module called within selectRegions is given below. A low-level
description of each module is provided in the Pseudo-code part of this document.

addObject

computeFeatures

createAlias
createObject
deleteAlias
deleteObject

findConnection

findObject

getLabel

mergeQObject

removeObject

selectSubset

updateObject

Add a new ObjectEntry with a given label to a list of objects.

Finish computing initial features for a list of ObjectEntries.

Normalize centroid, mean, and variance. Apply the selection
criteria minArea and maxRatio to eliminate objects. Compute
ranking metric (mean * area) to be used later (see Figure B-7).

Allocates and initializes memory for an AliasEntry structure.
Allocates and initializes memory for an ObjectEntry structure
Frees the memory for an AliasEntry structure.

Frees the memory for an ObjectEntry structure.

Find the connection between the current pixel and its neighbors to
determine what label to assign to the current pixel depending on
which neighbors are labeled (see Figure B-8).

Finds the ObjectEntry structure associated to a label value where
the object found has the given label value as its label value or an
alias of its label value (see Figure B-9).

Get a label to use for a new object’s label. When necessary,
recycle a used alias by relabeling the labeled image removing an
alias label so that that alias label can be reused.

Determines whether a given label and given object need to be
merged. First, if the label is already associated to the object (as its
label or an alias of its label) nothing is done. Next, if the label is
not associated to the object, find the object associated to the Jabel
and merge the two objects. Add the found object to the given
object’s alias list (remove it from the linked list of objects, create a
new alias, add it to the object’s alias list - adding its alias list to the
object’s alias list too) (see Figure B-10).

Removes an ObjectEntry structure from a linked list of Object—
Entries updating the pointer to the list of objects as required.

Rank the objects on the given list using the ranking metric
(mean*area), and keep the objects with the selectNumber highest
values (see Figure B-11).

Incrementally update the data associated to an object’s Object-
Entry structure - the initial features and the bounding box
associated to that object (one pixel’s contribution).

Loop over

Image n1 n2 nx no more pixels

no x

)

next pixel

pixel >

threshold?

createAlias getLabel
x
mergeObject r -a v
. : N
¥ i | findConnection addObject [~ | createObject
|
findObject r _J
A 4
updateObject
en
loop
computeFeatures
*, r--"1 selectSubset
SremoveObject|t

Figure B-6: Select Regions Module Flow Diagram

B-18

——><3
normalize
area, mean

Loop for

ach object on
regions

+ next object

area < N\ YCS

minArea?

\no more objects
-

_.I deleteObject

'S deleteAlias

yes

normalize centroid,
variance
compute mean*area

en
object
loop

-
'
F =1
|
!
)
-

=1 removeObject

v

Figure B-7: computeFeatures Flow Diagram

B-19

n2
labeled?

\\\\\ N 0
N labeled?

label = n2
deleteAlias nl
labeled?
1
E removeObject Tabel = 1l
)
[- -)
t
no
deleteObject n3)
labeled? + (See
note
below)

labeled?

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Nad@bject:

1
]
]
]
]
createAlias I‘: o
]
]
o '
X)
I
4

i

Neighobor Definition: n0 = left neighbor

nl = upper left neighbor
nl n2 n3 n2 = upper neighbor
nd x - n3 = upper right neighbor
- - - x = pixel being processed
- =neighbor in any state

1 This function is called only when one or more of the neighbors are labeled, so the
flow should never reach this point. When no neighbors are labeled, the pixel being
processed is the beginning of a new object and is handled differently in the calling
function (see selectRegions).

Figure B-8: findConnection Flow Diagram

B-20

foundFlag = J
FALSE

While object on \ no more objects, or foundFlag=TRUE

regions, and foundFlag ==
FALSE .~

no more
aliases, or
foundFlag
=TRUE

While alias on

object, and foundFlag ==
FALSE

next alias

foundFlag =]
TRUE

-

en

object
loop

Figure B-9: findObject Flow Diagram

B-21

foundFlag =
FALSE

Whiléalias on no more alifses, or
object, and foundFlag == >foundFlag=TRUE
FALSE

next alias

foundFlag =)
TRUE

foundFlag = J
TRUE

alias
loop

update
findObject bounding box createAlias
initial features
add label)
deleteObject (and alias list)
to alias list)
I'"""'"-"'"I
¥ ¥
deleteAlias removeObject

Figure B-10: mergeObject Flow Diagram

B-22

Yes .
numObjects<

selectNumber)

<

Whlle
still objects
on regzons

no more objects

[

object = next
object on regions premares
A
Y Y delete-
removeQbieet: Alias

v

Loop for
i=1 to
selectNumber

v

(

object = next
bject on regions

)

LremoveObject]

v

[

find location
for object

J

v

insert object
onto ranked list

deleteObject

A

find location
for abject

insert object
onto ranked list

(find smallest object on
ranked list

o\ ————

00

=

Figure B-11: selectSubset Flow Diagram

B-23

B.4.4 Feature Extraction Module

The Feature Extraction module implements the feature extraction component of the
sequence. The inputs to this module are: parameters distanceShort and distanceLong, input
image ¥V, object image O, and list regions. The output of this module is the final output for the
sequence and is the total feature list, features, for each selected ROI. The routine extractFeatures
is the high level routine in this module and interfaces with main as shown in Figure B-2.

A function hierarchy for the Feature Extraction module is shown in Figure B-12

below. Functions contained in other modules, but called within this module are also included and
are shaded to signify that they are functions called outside of the module.

B-24

-p| calculateDescriptors t---- > isPixelObject

extractFeatures } - -

r
]

1

]

]

1

1

]

]

- - P createFeature
]

]

1

]

]

]

1

]

L

-p| deleteFirstFeature

y ~--p| removeObject

deleteObject -
“® deletedlias

Figure B-12: Feature Extraction Module Function Hierarchy

This module goes through the list of objects regions, and for each object calculates the
GLCM descriptors entropy and energy for each of two given distances and four defined directions
(see the specification [AAEC-1]). The structure, FeatureEntry, shown in Table B-6 is used to
store the sixteen GLCM descriptor features for each object as well as point to the ObjectEntry
containing the other features already calculated. Since the number of features calculated in this
module is large, a new structure is introduced rather than having a place holder in ObjectEntry.
The inclusion of the GLCM descriptors in the Object-Entry structure was rejected since the total
number of objects is expected to be large. Yet, most of these objects will be culled prior to the
calculation of the descriptors.

Table B-6: FeatureEntry Structure Definition

type specifier member name comment

FeatureEntry *nextFeature pointer to next feature
ObjectEntry *objectPtr pointer to object entry
MoreFeatures addFeatures additional feature structure

B-25

Supporting structures, Descriptors, Angles, and MoreFeatures, are shown in Table B-7
through Table B-9. The Descriptors structure contains the GLCM entropy and energy feature
values. The Angles structure holds descriptor values for the four angles required, 0, 45, 90, and
135 degrees. And the MoreFeatures structure consists of Angles for both distances,
distanceShort and distanceLong, to contain a total of sixteen additional features for each object.

Table B-7: Descriptors Structure Definition

type specifier member name comment
Float entropy GLCM entropy
Float energy GLCM energy

Table B-8: Angles Structure Definition

type specifier member name comment

Descriptors deg0 features for 0 degrees
Descriptors degd5 features for 45 degrees
Descriptors deg90 features for 90 degrees
Descriptors degl35 features for 135 degrees

Table B-9: MoreFeatures Structure Definition

type specifier member name comment

Angles distShort features for short distance

Angles distLong features for long distance
B-26

The highest level function in this module is extractFeatures whose flow is depicted in
Figure B-13 below. Functions are represented by bold rectangular boxes with their names written
in bold italic inside the box. Functions contained in other modules, but called within this module
are also included and are shaded to signify that they are functions called outside of the module.
Function boxes that have a striped diagonal patterned background denote functions that appear
more than once in the flow diagram near the functions that call them (drawn more than once for
clarity). Solid arrows show the flow within the function and dotted arrows show function calls
from functions called within extractFeatures.

A list of each module called within extractFeatures is given below. A low-level
description is provided in the Pseudo-code part of this document.

calculateDescriptors Calculate the GLCM energy and entropy for an object (see Figure
B-14).

createFeature Allocates and initializes memory for a FeatureEntry structure.
deleteFirstFeature Frees the memory for the first FeatureEntry structure on the list.

isPixelObject Determines whether a given pixel location is part of an object (see
Figure B-15).

B-27

Loop for _
>< each object on >no more objects
regions

next object

| createFeature |

Loop for no more distances
each distance
> distanceShont,
distanceLong

next distance

Loop for no more directions
each direction \
0, 457, 90", 135° /

l next direction

calculateDescriptors ""l isPixelObject

direction
loop

fill in
feature

end

distance
loop

“removeObject.

en

object
loop

Figure B-13: Feature Extraction Module Flow Diagram

B-28

Loop over pixels no more pixels
<n bounding box for\ P |
given object /

next pixel

s PixelObject) Loop over 0 more bins
histogram bins

pixelFlag =
return from

call for pixel]
next bin
offsetFlag = normalize
craitlufl::r g?xrgl NisRixelgbrect sumHist and
(DiffHist

at distance

il

no

€s

add contribution
to entropy
and energy

add contribution
to sumHist and
DiffHist

add contribution
to entropy
and energy

end
return entropy
and energy

Figure B-14: calculateDescriptors Flow Chart

B-29

EsObject = FALSE)

v

label = label value at
given pixel location

— object, and

‘* - no more aliases, or
While alias on >Object =TRUE

EsObject = TRUE)

[isObject = TRUEJ

<

Figure B-15: isPixelObject Flow Chart

B.5 REFERENCES

[AAEC-1] “Data-Intensive Systems Benchmark Suite,” MDA972-97-C 0025, Atlantic
Aerospace Electronics Corp., Waltham, MA 02451, Spring 1999,

[AAEC-2] “DIS Benchmark C Style Guide: C Style and Coding Standards for the DIS
Benchmark Suite,” MDA972-97-C 0025, Atlantic Aerospace Electronics Corp.,
Waltham, MA 02451, December 28, 1998.

[Heckbert] Heckbert, Paul S., (Glassner, A. - editor), Graphic Gems, Academic Press, 1990,
pp- 275, 721.

B-30

! {Lumia]
|
|

Lumia, R., Shapiro, L., and Zuniga, O., “A New Connected Components
Algorithm for Virtual Memory Computers,” Computer Vision, Graphics, and
Image Processing, 22, pp. 287-300, 1983

B.6 PSEUDO-CODE

This part of the document lists the pseudo-code for the baseline application. The first section contains
a listing of the variable types and command structures. The sections that follow contain each module of
the sequence: Input & Output, Filtering, Region Selection, and Feature
Extraction. Details for each module are provided in the following subsections starting with the
highest level routine for the module, followed by lower-level functions in alphabetical order. The routine
descriptions and comments are provided along with the pseudo-code.

B.7 COMMON TYPES AND STRUCTURES

typedef char Char;
typedef unsigned char UChar;
typedef long int Int;
typedef short int ShortInt;
typedef float Float;
typedef double Double;
typedef Char Boolean;
/*
* Image structure for images
*/
typedef struct {
Int numColumns; /* number of columns in image */
Int numRows ; /* number of rows in image */
ShortInt *data; /* data pointer */

} ShortIntImage;

/*

* Image structure for kernels

*

/
typedef struct {
Int numColumns; /* number of columns in image */
Int numRows ; /* number of rows in image */
UChar *data; /* data pointer */
} UCharImage;

/*
* Structure for initial features
*/
typedef struct {
Float centroidColumn; /* centroid column feature */
Float centroidRow; /* centroid row feature */
Int area; /* area feature */
Int perimeter; /* perimeter feature */
Double mean; /* mean feature */
Double variance; /* variance feature */

} SomeFeatures;

/*
* Structures for additional features

*/

B-32

typedef struct {
Float entropy; /* GLCM entropy */
Float energy; /* GLCM energy */
} Descriptors;
typedef struct {

Descriptors deg0; /* features for 0 degrees */

Descriptors deg45; /* features for 45 degrees */

Descriptors deg90; /* features for 90 degrees */

Descriptors degl35; /* features for 135 degrees */
} Angles;

typedef struct {
Angles distShort; /* features for short distance value */
Angles distLong; /* features for long distance value */
} MoreFeatures;

/*
* Structures for ROI entries on equivalence table/list with features
*
/
typedef struct {
Int column; /* column coordinate of point */
Int Tow; /* row coordinate of point */
} Point;
typedef struct { :
Point upperLeft; /* upper left point of bounding box */
Point lowerRight; /* lower right point of bounding box */

} BoundingBox;

typedef struct AliasType {
AliasType *nextAlias; /* pointer to next alias */
ShortInt aliasLabel; /* alias label value */

} AliasEntry;

typedef struct ObjectType{

ObjectType *nextObject; /* pointer to next object */
ObjectType *lastObject; /* pointer to last object */
AliasEntry *aliasList; /* pointer to alias list */
ShortInt labelvValue; /* label value */

BoundingBox box; /* bounding box around ROI */
Float rankMetric; /* ranking metric */

SomeFeatures initFeatures; /* initial features */
} ObjectEntry;
typedef struct FeatureType({

FeatureType *nextFeature; /* pointer to next ROIs features */
ObjectEntry *objectPtr; /* pointer to object pointer (to

* gccess the initial features)

*/
MoreFeatures addFeatures; /* additional features */

} FeatureEntry;

B.8 INPUT & OUTPUT MODULE

B.8.1 main

Name: main

Input: input file name (option w/default being stdin)
Output: feature output file (option w/default being stdout)

B-33

metrics output file (option w/default being stderr)
error output (directed to stderr)

Description: This program executes the Image Understanding sequence. The main routine
which invokes the sequence calling the highest level functions in the other
modules, interfaces between the I/O, and calculates the metrics. The control for
the implementation is at this level and includes allocating and freeing memory for
intermediate results when necessary. Time stamps are taken to provide the
metrics specified in the specification [AAEC-1]. To minimize the space required,
the routine selectRegions overwrites its input buffer for image W to store output
labeled image O. Memory buffers are freed as soon as they are no longer

required.
Calls: createShortIntImage()
errorMessage()
extractFeatures()
filterImage()
flushErrorMessage()
freeShortIntimage()
freeUCharImage()
readInput()
selectRegions()
writeOutput()
(system) difftime()
time()
{ /* begin main */
Get command-line Int, argc /* # of line arguments */
Get command-line arguments, argv /* command-line arguments */
Define Char, *inputFile /* input file name */
Define Char, *outputFile /* output file name */
Define Char, *metricFile /* metric file name * /
Define Int, error /* error flag for routines */
Define UCharImage **kernelK /* pointer to kernel image K */
Define ShortIntImage **imageV /* pointer to input image V */
Define ShortIntImage **imageW /* pointer to image W
* (reused to store image O
*
Define Boolean transposeFlag /*/flag for transpose */

/*
* Get filenames or set variables to NULL to obtain defaults for
* input, output, and metric files
*/
startTime = time () ;
set up input either files specified by user
or stdin, stdout, and stderr

/*
* Read input file
*/
Call error = readInput (inputFile, &imageV, &kernelK, &thresholdLevel,
&minArea, &maxRatio, &selectNumber,
&distanceShort, &distancelong, &transposeFlag)

B-34

If error I= READ_INPUT_SUCCESS Then

errorMessage (“main: “);

flush error buffer

Return /* FATAL: unable to open files */
EndIf

imageW = createShortIntImage(imageV->numColumns, imageV->numRows)
If imageW == NULL Then
freeUCharImage (&kernelK)
freeShortIntImage (&imageV)
errorMessage (“main: Error creating buffer for filtered image\n");
flush error buffer

Return /* FATAL: unable to allocate memory */
EndIf
/*
* Morphological Filter component
*/

Set markTime = time ()

Call error = filterImage(kernelK, imageV, imageW)

If error != FILTER_IMAGE_ SUCCESS Then
freeUCharImage (&kernelkK)
freeShortIntImage (&imageV)
freeShortIntImage (&imageW)
errorMessage (“*main: Error in Filtering component - EXITTING\n"“);
flush error buffer)
Return /* ERROR: filter image unsuccessful */

EndIf

calculate filterTime

freeUCharImage (&kernelK)

/*
* ROI Selection component
*/
Set markTime = time ()
Call error = selectRegions(imageV, thresholdLevel, minArea,

maxRatio, selectNumber, imageW, ®ions)

If error != SELECT_REGIONS_SUCCESS Then
freeShortIntImage (&imageV)
freeShortIntImage (&imageW) /* which also frees imageO */
loop for each object on regions
deleteObject (object)
endloop
errorMessage (
“main: Error in Region Selection component - EXITTING\n“);
flush error buffer
Return /* ERROR: select regions unsuccessful */
EndIf
calculate selectRegionsTime

/*
* Feature Extraction component
*/
Set markTime = time ()
Call error = extractFeatures(imageV, imageW, regions, distancesShort,
distancelong, &features)
If error != EXTRACT_ FEATURES_SUCCESS Then

B-35

freeShortIntImage (&imageV)
freeShortIntImage (&imageW) /* which also frees imageO */
loop for each item on features
deleteFirstFeature (item)
endloop
errorMessage (
“main: Error in Region Selection component - EXITTING\n");
flush error buffer
Return /* ERROR: extract features unsuccessful */
EndIf
calculate extractFeaturesTime
freeShortIntImage (&imageV)
freeshortIntImage (&imageW) /* which also frees imageO */

/*

* Write output file

*/
Call error = writeOutput(outputFile, transposeFlag, &features)
If error != WRITE_OUTPUT_SUCCESS Then

Return /* FATAL: unable to write output */

EndIf
calculate totalTime

/*
* Write metric file
*/
Open metricFile
report filterTime, selectRegionsTime, extractFeaturesTime, totalTime

/*
* Clean up before Return
*/

Return SUCCESS

B.8.2 createShortIntImage

Name: createShortIntImage
Input: numColumns, numRows
Comment: This routine allocates memory to store an image and fills in the shortIntImage

structure except for the image data. If there is an error allocating memory, than a
NULL pointer is returned. Assumptions: the image dimensions given are positive
and greater than zero.

Calls: errorMessage()
(system) malloc()
free()
Return: shortIntImage structure pointer (partially filled in — no data — and allocated)

NULL (error allocating memory for image/image structure)

{ /* begin createShortIntImage */

assert (dimensions >= 0)

allocate memory for shortIntImage structure
if error allocating memory
call errorMessage (

wcreateShortIntImage: Error allocating memory.\n”);

return (NULL)

allocate memory for image data

if error allocating memory
free memory for shortIntImage structure
call errorMessage (

screateShortIntImage: Error allocating memory.\n”);

return (NULL)
initialize members in shortIntImage structure (except for data)
return (shortIntImage)
} /* end createShortIntImage */

B.8.3 createUCharImage

Name:
Input:
Comment:

Calls:
(system)

Retumn:

createUCharlmage

image dimensions

This routine allocates memory to store an image and fills in the uCharImage
structure except for the image data. If there is an error allocating memory, than a
NULL pointer is returned. Assumptions: the image dimensions given are positive
and greater than zero.

malloc()
free()
uCharlmage structure pointer (partially filled in — no data — and allocated)

NULL (error allocating memory for image/image structure)

{ /* begin createUCharImage */
assert (dimensions >= 0)

allocate memory for uCharImage structure

if error allocating memory
call errorMessage (“createUCharImage: Error allocating memory.\n") ;
return (NULL)

allocate memory for image data

if error allocating memory
free memory for uCharImage structure
call errorMessage (“createUCharImage: Error allocating memory.\n”);
return (NULL)

initialize members in uCharImage structure (except for data)

return (uCharImage)

} /* end createUCharImage */

B.8.4 freeShortIntImage

Name: freeShortIntImage

Input: shortIntImage structure pointer

Comment: This routine frees memory to associated to a shortIntImage structure. It is
assumed that the pointer being passed is a non-NULL valid image structure
pointer.

Calls:

B-37

(system)
Return:

free()
none

{ /* begin freeShortIntImage */
assert (image pointer not null)

free image data
free shortIntImage structure
set image pointer to NULL

return

} /* end freeShortIntImage */

B.8.5 freeUCharImage

Name:
Input:
Comment:

Calls:
(system)
Retum:

freeUCharlmage

uchar image structure pointer

This routine frees memory to associated to a uCharImage structure. It is assumed
that the pointer being passed is a non-NULL valid image structure pointer.

free()
none

{ /* begin freeUCharImage */
assert (image pointer not null)

free image data
free shortIntImage structure
set image pointer to NULL

} /* end freeUCharImage */

B.8.6 readlnput

Name:
Input:
Output:

Description:

readInput

inputFileName

V image, K kernel, thresholdLevel, minArea, maxRatio, selectNumber,
distanceShort, distanceLong, transposeFlag

Open input file and read in the input kernel, image, and parameters. The input file
can be a disk file or the input stream stdin. Pass the transposeFlag parameter
from the routine reading in the image to the routine reading in the kernel and to
the main routine. If the input image is transposed, then the kernel also is
transposed, and the output must be transposed. Thus, the flag transposeFlag,
must be retained and passed to the routines affected. Validity checks are
performed on the input. The following cases are invalid and cause an error return:
1) a kernel K dimension is smaller than image ¥ dimension

2) kernel dimension is not odd

3) no pixels in kernel are greater than zero

4) minArea <0

5) minArea >= total area of input image V'

1

6) maxRatio <=0

7) selectNumber <=0

8) selectNumber >=2'%-2=65534

9) distanceShort <=0

10) distanceShort >= number columns, number rows in ¥
11) distanceLong <=0

12) distanceLong >= number columns, number rows in ¥
Close the input file on the return.

Calls: errorMessage()
readUCharlmage()
readShortIntImage()

(system) fclose()
fopen ()

Return: READ INPUT_SUCCESS

READ_INPUT_ALLOC_ERROR
READ_INPUT_INVALID INPUT_PARAMETER
READ_INPUT_INVALID KERNEL
READ_INPUT_KERNEL_NOT_ODD
READ_INPUT_KERNEL_TOO_LARGE
READ_INPUT OPEN_FILE_ERROR
READ_INPUT READ FILE ERROR
READ_INPUT CLOSE_FILE_ERROR

{ { /* begin readInput */
open file (or stdin if no input filename given)
if error
call errorMessage (“readinput: error opening input file\n”)
return READ INPUT_OPEN_FILE_ERROR

/ *
* Read in input image V, transposing and setting transposeFlag
* if the number of columns > number of rows.
*
/
call readShortIntImage to get imageV and transposeFlag
if return is READ_SHORT_ INT_IMAGE ALLOC_ERROR then
call errorMessage (“readinput: ”)
close input file
return READ INPUT_ALLOC_ERROR
elseif return != READ SHORT INT_ IMAGE_SUCCESS then
call errorMessage (“readinput: ")
close input file
return READ INPUT READ_FILE_ERROR

/ *
* Read in kernel image K, transposing if transposeFlag is set.
*
/
call readUCharImage passing transposeFlag to get K
if return is READ_UCHAR_IMAGE_ALLOC_ERROR then
call errorMessage (“readinput: ")
freeshortIntImage (&imageV)
close input file
return READ_INPUT ALLOC_ERROR

B-39

elseif return != READ UCHAR_IMAGE_SUCCESS then
call errorMessage (“readinput: *)
freeShortIntImage (&imageV)
close input file
return READ_INPUT_READ_FILE_ERROR

* Check validity of kernel:
* 1) verify kernel is smaller than image
* 2) verify kernel has dimensions that are odd
* 3) make sure kernel has at least one pixel > 0
*
/
if ((kernel numColumns > input numColumns) or
(kernel numRows > input numRows))
call errorMessage (“readinput: kernel too large\n”)
freeShortIntImage (&imageV)
freeUCharImage (&kernelK)
close input file
return READ INPUT KERNEL_ TOO_LARGE
if ((kernel numColumns not odd) or
(kernel numRows not odd))
call errorMessage (“*readinput: kernel has even dimension\n”)
freeShortIntImage (&imageV)
freeUCharImage (&kernelK)
close input file
return READ_INPUT_ KERNEL_ NOT_ODD
pixelCount = 0
loop over pixels
if kernel (pixel) > 0
pixelCount += 1
end /* loop */
if pixelCount ==
call errorMessage (“readinput: kernel has no pixels != 0\n”)
freeShortIntImage (&imageV)
freeUCharImage (&kernelK)
close input file
return READ_INPUT_INVALID KERNEL

/*
* Read in the input parameters.
*/
read inputs: thresholdLevel, minArea, maxRatio, selectNumber,
distanceShort, and distanceLong
if error reading in a parameter

call errorMessage(“readinput: error reading input parameters\n”)

freeShortIntImage (&imageV)
freeUCharImage (&kernelK)

close input file

return READ INPUT_READ FILE ERROR

/*

* Check validity of input parameters:
* 4) minArea >= 0

* 5) maxRatio > 0

* 6) selectNumber > 0

* 7) distanceShort > 0

*

8) distanceLong > 0

B-40

* % * *

*/

9) minArea < total area of input image V

10) distanceShort < number columns, number rows in v
11) distanceLong < number columns, number rows in V
12) selectNumber < 2% - 2

if ({(minArea < 0) or

(maxRatio <= 0) or
(selectNumber <= 0) or
(distanceShort <= 0) or
(distanceLong <= 0) or
(minArea >= (numColumns in V) * (numRows in V)) or
(distanceShort >= min[(numColumns in V), (numRows in V1) or
(distanceLong >= min[(numColumns in V), (numRows in V)]) or
(selectNumber >= (2'¢ - 2)))

call errorMessage (“readinput: error invalid input parameter\n”)

freeShortIntImage (&imageV)

freeUCharImage (&kernelK)

close input file

return READ_INPUT_INVALID_INPUT_PARAMETER

close input file
if error closing input file
call errorMessage (“readinput: error closing input file\n")
freeShortIntImage (&imageV)
freeUCharImage (&kernelK)
return READ INPUT CLOSE_FILE_ERROR

return READ_INPUT_ SUCCESS
} /* end readInput */

B.8.7 readShortIntlmage

Name:
Input:
Output:
Comment:

Calls:

readShortIntImage

file pointer to input file

ShortInt image structure filled in and allocated, transposeFlag

This routine accesses the input file, calls a routine to allocate memory to store an
image and stores the short integer values in this memory. The file pointer is
assumed to be open and is left open. If the input image has more columns than
rows, the image is read in and transposed as it’s stored into the image buffer, and
the transposeFlag is set to TRUE. If the input image has a number of columns
that is equal or less than the number of rows, the image is read in stored into the
image buffer in the same orientation as provided in the input file, and the
transposeFlag is set to FALSE. An error will be returned if: there is a problem
allocating memory for the image structure, there is an error reading in the data, or
the dimensions of the image are negative or equal to zero. There is also an error if
the data being read in is outside of the legal data values set by
DATA_LOWER_LIMIT and DATA_UPPER_LIMIT. These two values are -/+
16383 and guarantee that the processing performed by the sequence will yield a
value that will be in the dynamic range of a short integer as stipulated in the
benchmark specification.

createShortIntImage()

B-41

freeShortIntImage()
(system) fread()

|Return: READ SHORT INT IMAGE_SUCCESS

READ SHORT INT IMAGE_ALLOC_ERROR
READ_SHORT INT IMAGE_INVALID DIMENSIONS
READ SHORT INT IMAGE READ ERROR

READ SHORT_INT _IMAGE_INVALID DATA

{ /* begin readShortIntImage */
/* Use file pointer that is already opened. */

*shortIntImage
*transposeFlag

/

NULL /* initialize pointer return */
FALSE /* initialize transposeFlag to false */

[}

Read in the input image Vv, first read in dimensions, if the
number of columns and number of rows > 0 (valid dimensions), and
number of columns > number of rows, then transpose the image

as it’'s being read in. Create an image structure to store

the image dimensions and data.

* % X ¥ ¥ *

*

/

read in dimensions of image

if error reading in dimensions
call errorMessage (“readShortIntImage:error reading dimensions\n”)
return READ SHORT INT_IMAGE_READ ERROR

if (dimensions =< 0)
call errorMessage (“readShortIntImage:error invalid dimensions\n”)
return READ_SHORT INT_IMAGE_INVALID DIMENSIONS

if (number of columns > number of rows) then {
set transposeFlag
switch number of columns and rows

} /* end transpose case */

*shortIntImage = call createShortIntImage

if *shortIntImage == NULL
call errorMessage (“readShortIntImage: “)
return READ SHORT_INT_IMAGE_ALLOC_ERROR

if (transposeFlag == TRUE)
read in image data storing the transpose

else
read in image data

end /* if else */

if data is outside of range (DATA LOWER_LIMIT,DATA UPPER_LIMIT)
call freeShortIntImage (shortIntImage)
call errorMessage (“readShortIntImage: error invalid data\n”)
return READ_SHORT_ INT IMAGE_INVALID DATA

if error reading in data
call freeShortIntImage (shortIntImage)
call errorMessage (“readShortIntImage: error reading data\n”)
return READ_SHORT_INT IMAGE_READ ERROR

return READ_SHORT_INT_IMAGE_SUCCESS
} /* end readShortIntImage */

B-42

B.8.8 readUCharImage

Name: readUCharlmage

Input: file pointer to input file, transposeFlag

| Output: UChar image structure filled in and allocated |

Calls:

Comment: This routine accesses the input file, calls a routine to allocate memory to store an

(system) fread()

image and stores the positive integer values in this memory. The file pointer is
assumed to be open and is left open. If the transposeFlag is set to TRUE, the
kernel is read in and transposed as it’s stored into the image buffer. If the
transposeFlag is not set, the kernel is read in stored into the image buffer in the
same orientation as provided in the input file. An error will be returned if: there is
a problem allocating memory for the image structure, there is an error reading in
the data, or the dimensions of the image are negative or equal to zero.
createUCharlmage()

freeUCharImage()

Return: READ UCHAR IMAGE_SUCCESS
READ UCHAR_IMAGE_ALLOC_ERROR
READ UCHAR_IMAGE_INVALID_ DIMENSIONS
READ UCHAR_IMAGE_READ_ERROR

{ /* begin readUCharImage */

/* Use file pointer that is already opened. */

*uC

/*
*
*
*
*

*/
rea
if

if

if
} /
*uC
if
if
els

end

harImage = NULL /* initialize pointer return */

Read in the input kernel, first read in dimensions, if the

number of columns and number of rows > 0 (valid dimensions),

then read in kernel (transposing if transposeFlag is set).

Create an image structure to store the kernel dimensions and data.

d in dimensions of image
error reading in dimensions
call errorMessage (“readUCharImage:error reading dimensions\n”)
return READ UCHAR_IMAGE_READ_ERROR
(dimensions =< 0)
call errorMessage (“readUCharImage:error invalid dimensions\n”)
return READ UCHAR_IMAGE_INVALID_ DIMENSIONS
(transposeFlag == TRUE) then ({
switch number of columns and rows
* end transpose case */
harImage = call createUCharImage
*uCharImage == NULL
call errorMessage (“readUCharImage: “)
return READ UCHAR_IMAGE_ ALLOC_ERROR
(transposeFlag == TRUE)
read in image data storing the transpose
e
read in image data
/* if else */

B-43

if error reading in data
call freeUCharImage (&uCharImage)
call errorMessage (*readUCharImage: error reading data\n”)
return READ UCHAR_IMAGE_READ_ERROR

return READ_UCHAR_IMAGE__SUCCESS
} /* end readUCharImage */

B.8.9 writeQutput

Name:
Input:
Output:

Description:

Calls:
(system)

Retumn:

writeOutput

outputFileName, transposeFlag, features

The output file created with the features written to the file in ascii format as
specified in the spec.

Open output file and write out the output contained in the features linked list. If
the transposeFlag is set, then “transpose” the feature values to reflect features that
are valid for input images that are NOT transposed. The flag is set when the input
image is transposed before applying the image understanding sequence.
Therefore the output must be changed to obtain the values that correspond to
applying the sequence to the input image not transposed. This entails a simple
switching of values. The features obtained are symmetric with respect to a
transpose so that the centroid column value becomes the centroid row value (and
the centroid row value becomes the centroid column value). When the centroid
column and row values are switched, they represent the features that would have
been derived from the image if the image had NOT been transposed. The GLCM
descriptors have a similar pairing because of the relationship between the
directions chosen. For these features, if the transpose has occurred, the 0 degree
and the 90 degree descriptor values are switched. The GLCM descriptor values
for 45 degrees and 135 degrees are unaffected by the transpose. A 45 degree
vector is along the axis of the transpose and remains 45 degrees. A 135 degree
vector transposed becomes a 315 degree vector, which is along the same ray as
135, but in the opposite direction. Since the GLCM descriptors are being
calculated using sum and difference histograms that are equivalent for directions
180 degrees apart, no change is required for the 135 degree descriptors. Once
these swaps are complete, the full set of features represents values for an image
that is not transposed. The other features are not affected by the transposition of
the input image.

deleteFirstFeature()

errorMessage()

fclose()

fopen ()

WRITE_OUTPUT_SUCCESS

WRITE_OUTPUT_OPEN_FILE_ERROR
WRITE_OUTPUT_WRITE_FILE_ERROR
WRITE_OUTPUT_CLOSE_FILE ERROR

{ /* begin writeOutput */
open file (or stdout if no input filename given)

B-44

if error

call errorMessage (“*writeOutput: error opening output file\n”)
delete all items on features
return WRITE_QUTPUT;OPEN_FILE_ERROR

* * ¥ * ¥

Write out the features for each object on the features list.

If the transposeFlag has been set, “transpose” the features
(switch centroid column and row values, and switch 0 and 90 degree
descriptor values) before writing out their values. Delete each

* featureEntry structure after it is processed.

*/

Loop for each item on features {

if (transposeFlag == TRUE) {
switch centroid column and centroid row values
switch descriptor values for 0 and 90 degrees

} /* end if transposeFlag */

write out features

if error writing out a feature
call errorMessage (“writeOutput: error writing output\n”)
delete all items on features
return WRITE_OUTPUT_WRITE_FILE_ERROR

call deleteFirstFeature (item)

item

nextItem

} /* end loop for each item */

close output file

if error closing output file
call errorMessage (“writeOutput: error closing output file\n”)
return WRITE_OUTPUT_CLOSE_FILE ERROR

Return WRITE_OUTPUT_ SUCCESS
} /* end writeOutput */

B9 FILTERING MODULE

B.9.1 filterImage

Name:
Input:
Output:
Description:

filterlmage
K kernel, ¥ image
W image
This routine calculates W image, where W = ¥ — [(V eroded K) dilated K]. Note
that the input image ¥ is READONLY and an output buffer is given for image W.
The function is implemented to minimize memory required (to be able to handle
very large input images).
Assumptions: 1) images ¥ and /¥ have the same dimension

2) kernel dimension is smaller than image V' dimensions

3) kernel dimensions are odd

4) kernel has at least one non-zero pixel (defining shape)
First erode image, W = V eroded K, with a call to erodelmage, and then compute
the dilation and subtraction simultaneously in-place, with a call to
dilateAndSubtract. Then zero out the shell ((kernelNumRows-1) top and bottom,

B-45

|

(kernelNumColumns-1) right and left) were there isn’t enough valid data to

compute valid output data for a sequence of two morphological operations (as

stated in the specification [AAEC-1]).

An error will be returned if there is an error received by dilateAndSubtract from a

memory allocation failure.

Calls: erodeImage()
dilateAndSubtract()

(system) malloc()
free()

Return: FILTER IMAGE_SUCCESS

FILTER_IMAGE _ALLOC_ERROR

{ /* begin filterImage */

/*

* Assumptions:

* 1) images V and W have the same dimension

* 2) kernel dimension is smaller than image V dimensions

* 3) kernel dimensions are odd

* 4) kernel has at least one non-zero pixel (defining shape)
*

/

assert (dimensions of V same as dimensions of W)
assert (kernel is smaller than image)

assert (kernel has dimensions that are odd)
assert (kernel has at least one pixel > 0)

/
This implementation is designed to minimize memory required, to
perform calculations in-place (when no buffers are available for
use), and to be fast. Handle the outer shell, where there is not
enough input data to generate valid output data (see
specification), at the end of routine (set the pixels

in this area to zero).

Note that for the image understanding sequence, this routine is
guaranteed to have a read only input and an output buffer. (The
image V is needed within the components that follow.) Therefore,
the function can NOT be totally in-place. Perform the first
operation (the erode) using the output buffer. Then calculate
the dilate and the subtraction in-place in the output buffer.

* 0% % F k% % Ok F % * ¥ % %

*
~

/*
* Perform the erosion first.
*/

call erodeImage (kernel, V image, W image)

/*
* Next is the dilation and subtraction.
*/
returnCode = dilateAndSubtract(kernel, V image, W image)
if (returnCode == DILATE_ AND_SUBTRACT ALLOC_ERROR)
call errorMessage(“filterImage: ")
return FILTER IMAGE ALLOC_ERROR

B-46

Zzero out outer row edges (portions where there is not enough
valid input data to compute valid output data. (Contiguous data
access as single loop incrementing image pointer.) This shell is
twice the size for a single morph operation because this module
computes two sequential morphological operations.

* F % * * *

*/

/* firstRow - first row index processed */
/* lastRow - last row index processed */
firstRow = 2 * halfKernelNumRows
lastRow = (filtered numRows) - (2 * halfKernelNumRows) - 1
firstColumn = 2 * halfKernelNumColumns
lastColumn = (filtered numColumns) - (2 * halfKernelNumColumns) - 1
for row = firstRow to lastRow
/* zero out left columns */
for column = 0 to firstColumn - 1
output = 0
end for /* column */
/* zero out right columns */
for column = lastColumn + 1 to (detected numColumns - 1)
output = 0
end for /* column */
end for /* row */

/* zero out top rows (including left & right column area */
dataPointer = &w(0,0)
numiElmsBorder = (kernel numRows - 1) * (filtered numColumns)
for index = 0, numElmsBorder

*dataPointer = 0

dataPointer += 1
end for /* index */

/* zero out bottom rows (including left & right column area */
dataPointer = w(input numRows - kernel numRows - 1,0)
for index = 0, numElmsBorder
*dataPointer = 0
dataPointer += 1
end for /* index */

return (FILTER_IMAGE_SUCCESS)

} /* end filterImage */

B.9.2 erodeImage

Name: erodelmage

Input: K kernel, ¥ image

Output: W image

Description: This routine calculates /¥ image, where W = V eroded K. Note that the input

image ¥ is READONLY.

Assumptions: 1) images ¥ and W have the same dimension
2) kernel dimension is smaller than image ¥ dimensions
3) kernel dimensions are odd

B-47

4) kernel has at least one non-zero pixel (defining shape)

For morphological calculations, any kernel pixel or image pixel that has a zero
value requires NO OPeration at all. Since the input image contains short integer
values, the probability of it containing a value equal to zero is small. The kernel,
however, is of type unsigned char and may very well have some zero values. To
take advantage of these NOOPs and increase processing speed, loop over the
kernel first and then over the image while calculating the erosion. Then, for any
kernel pixel that is zero, the input image does not need to be referenced at all and
processing can jump to the next kernel pixel! Note that the erosion for any pixel
1s not fully computed until the outer loop over the entire kernel completes.

The shell around the image ((kernelNumRows-1)/2 rows of pixels on the top and
bottom of the image, and (kernelNumColumns-1)/2 columns of pixels to the left
and right of the image) is set to zero because not enough valid data exists to
calculate valid output data in this shell.

Calls: none
Return: none
{ /* begin erodeImage */
/ *
* Assumptions:
* 1) images V and W have the same dimension
* 2) kernel dimension is smaller than image V dimensions
* 3) kernel dimensions are odd
*

4) kernel has at least one non-zero pixel (defining shape)
*/

assert (dimensions of V same as dimensions of W)

assert (kernel is smaller than image)

assert (kernel has dimensions that are odd)

assert (kernel has at least one pixel > 0)

/* initial output buffer to a value (SHORT _INT MAX) favoring the
* data - performing a MIN will favor the data
*/
loop for each pixel w(x,y)
w(x,y) = SHORT_INT MAX
end /* loop over w(x,y)

/
Perform the erosion.

For morphological calculations, any kernel pixel or image pixel
that has a zero value requires NO OPeration at all. Since the
input image contains short integer values, the probability of it
containing a value equal to zero is small. The kernel, however,
is of type unsigned char and may very well have some zero values.
To take advantage of these NOOPs and increase processing speed,
loop over the kernel first and then over the image while
calculating the erosion. Then, for any kernel pixel that is zero,
the input image does not need to be referenced at all and
processing can jump to the next kernel pixel! Note that the
erosion for any pixel is not fully computed until the outer loop
over the entire kernel completes.

* ok ¥ F k¥ Sk * K ¥ F F* ¥ ¥

B-48

*
/
loop for each pixel k (m,n)
if k(m,n) > O
loop for each pixel v(x,y) where (M-1) /2<=x<X- (M-1) /2
and (N-1)/2<=y<Y-(N-1)/2
wix,y) = MIN(w(x,y) ., v (x+m,y+n))
end /* loop over v(x,y) */
end /* if k(m,n) > 0 */
end /* loop over k(m,n) */

/*
* Zero out the unprocessed shell where there is not enough valid
* data to generate valid output data.
*
/
loop over top rows, bottom rows, left columns, and right columns of
W in the unprocessed shell
wi{x,y) =0
end /* loop over shell */

return

} /* end erodeImage */

B.9.3 dilateAndSubtract

Name: dilateAndSubtract v
Input: K kernel, V image, W image
Output: W image

Description: This routine calculates W image, where W =V — [W dilated K]. Note that the input
image ¥ is READONLY. The function is implemented to minimize memory
required (to be able to handle very large input images).

Assumptions: 1) images ¥ and W have the same dimension
2) kernel dimension is smaller than image V dimensions
3) kernel dimensions are odd
4) kernel has at least one non-zero pixel (defining shape)
5) The shell ((kernelNumRows-1)/2 top and bottom,
(kernelNumColumns-1)/2 right and left) is set to zero in
the calling routine (NOT here).

Dilate and subtraction simultaneously in-place. This implementation is optimized
to minimize memory required, to perform calculations in-place (the input is
overwritten and becomes the output), and to be fast. Use a temporary buffer to
store ‘half the number of rows of a kernel” amount of rows of the image W
allowing an in-place calculation to be performed.

Calls:
(system) free()
malloc()
memcpy()
Return: DILATE_AND SUBTRACT_SUCCESS

DILATE_AND_SUBTRACT_ALLOC_ERROR

B-49

{ /* begin dilateAndSubtract */
/*
* Assumptions:
* 1) images V and W have the same dimension
* 2) kernel dimension is smaller than image V dimensions
* 3) kernel dimensions are odd
* 4) kernel has at least one non-zero pixel (defining shape)
* 5) The shell ((kernelNumRows-1)/2 top and bottom,
* (kernelNumColumns-1) /2 right and left) is set to zero in
* the calling routine (NOT here)
*

*

/

/* assert assumptions about images */

assert (dimensions of V same as dimensions of W)
assert (kernel is smaller than image)

assert (kernel has dimensions that are odd)
assert (kernel has at least one pixel > 0)

alloc tempEroded space [(kernel numRows)/2 - 1] x input numColumns
if alloc fails
call errorMessage (“dilateAndSubtract: error allocating buffer\n”)
return DILATE AND SUBTRACT_ALLOC_ERROR

/*

* Perform the dilation and subtract in place using tempEroded.
* Can’'t use the same trick as for the erode to increase speed’
* because from here on, calculations must be in place. The buffer
* is used to store the first top half of a kernel’s worth of image
* pixels since the in-place calculations will overwrite all pixels
* above and to the left of the current pixel (when the image is
* processed top row to bottom row, and from left column to right
* column. After each row is processed, the buffer must be cycled
* to represent the correct rows associated to the new current row.
*
/

halfKernelNumRows = (kernel numRows - 1)/2

halfKernelNumColumns = (kernel numColumns - 1)/2

/* firstColumn - first column index processed */

/* lastColumn - last column index processed */

firstColumn = 2 * halfKernelNumColumns

lastColumn = (filtered numColumns) - (2 * halfKernelNumColumns) - 1

/* firstRow - first row index processed */

/* lastRow - last row index procegsed */

firstRow = 2 * halfKernelNumRows

lastRow = {(filtered numRows) - (2 * halfKernelNumRows) - 1

initialize tempEroded
for row = firstRow to lastRow
update tempEroded
for column = firstColumn to lastColumn
Set up some bookkeeping so that the loop that follows knows
where to access the data
(from tempEroded or from the input buffer)
/* calculate dilate pixel */
loop for each pixel k(m,n)
maxval = MAX(maxval, w buffer (from tempEroded or buffer))
update tempEroded as needed
end /* loop over k(m,n) */

calculate filtered value (subtract dilate pixel from original)
w{column, row) = v(column, row) - w(column, row)
store output in place
end for /* column */
end for /* row */

/* free temporary buffers required to compute in-place */
free tempEroded

return (DILATE_AND_SUBTRACT_SUCCESS)
} /* end dilateAndSubtract */

B.10 REGION SELECTION MODULE

B.10.1 selectRegions

Name: selectRegions

Input: V image input image
thresholdLevelinput threshold, above which a pixel is considered “target”
minArea minimum acceptable area criteria
maxRatio maximum acceptable perimeter/area ratio
selectNumber number of objects to retain (largest values) after ranking
W image filtered image

Output: W image labeled image (filtered image overwritten by labeled image)
regions object list containing bounding box, initial features, and
alias lists for each object

Comment: This routine is the highest level routine for the Region Selection module and

provides an interface with the mainline. First the image W is thresholded to
determine which pixels are considered “on target”. Then these target pixels are
grouped so that contiguous pixels form regions. The value SHORT INT_MIN is
used to signify a background pixel value. As the objects are formed, features are
calculated in an incremental fashion. Whenever two objects are merged, the
partial features are also merged to represent the partial features for the merged
object. Once all the regions have been determined, the feature computations are
completed. Then a selection criteria is used to select a subset of regions of
interest(ROIS) to retain. The outputs of this routine are: a labeled image, O and a
list of selected ROIs (with feature values), regions. The labeled image consists of
the pixel value SHORT_INT_MIN for every background pixel, and an index/label
value for every target pixel. These indices can be used with the information from
regions to determine the location and shape of an ROIL

To minimize memory requirements, selectRegions uses the input filtered image W
to store the values in the labeled image O.

Many algorithms exist to group neighboring pixels into a connected region. Two
types of these connected component algorithms were considered for
implementation. One uses the seed fill approach by [Heckbert] and the other is a
raster scan approach described by [Lumia]. The seed fill algorithm takes a seed
point and connects neighbors with the same value as the seed point to a given new

B-51

value. A stack is used to store neighboring pixels of interest and processing
continues until the stack is empty. This algorithm is often useful in paint utilities
and was not used here because of the irregular memory access required and the
possibility of the stack growing unmanageable. However, this algorithm, as well
as others that exist, should be considered as a viable alternative for others who
implement this benchmark.

The raster scan approach described in [Lumia] contains three variations. The first
variation traverses the image line by line assigning pixels to objects and updating
an equivalence table that keeps track of the objects that have been merged. As the
image is traversed and distinct labels are assigned to pixels to represent distinct
objects, it is possible for two separate objects to become connected. Then these
two connected objects are really one object and need to be merged into one
object. This is achieved by associating multiple labels to one object, where one of
these labels will be defined as the label for that object and the other labels will be
aliases for that object. Therefore, when the end of the image is processed, each
distinct object is labeled and may have any number of aliases associated to it.
These aliases are stored on the equivalence table defining which labels go to
which object. Thus, for large images with complex objects, the size of the
equivalence table may grow to an unmanageable size. The second variation has
no equivalence table and iterates on the image in two passes: one from top to
bottom and the other from bottom to top. While the image is traversed a flag is
set if any objects were merged. The iterations continue until an iteration occurs
that does not have the flag set (where no objects were merged). This variation
requires an undetermined number of passes through the image, which may be
very large. The third variation is a hybrid of the other two where the image is
traversed twice: once top to bottom and then from bottom to top. For each image
line, an equivalence table is kept to keep track of merged objects (which is used to
relabel the objects). While each image line is processed, an equivalence table
keeps track of merged objects. At the end of the image line, if any objects have
been merged, the merged pixels are relabeled using the data on the equivalence
table. This method has a smaller equivalence table and a predetermined number of
passes through the image, but may require revisiting many pixels in order to
relabel objects.

For this benchmark, assuming that the targets (or objects) to be labeled are never
going to be very large compared to image size or very intricate in terms of shape,
the first raster scan approach has been implemented. The size of the equivalence
table, however, is bounded and a relabeling procedure is performed whenever the
limits of the table are reached.

The algorithm used, for the baseline implementation, to group neighboring pixels
into regions is described as follows. As the image W is traversed, any pixel value
larger than thresholdLevel is considered a target pixel. The image is traversed

from the top row to the bottom row and from the left column to the right column.
The neighbors of a target pixel (above and to the left — or neighboring pixels that

have already been processed) are checked to see if any are labeled. If none of the
neighbors are labeled, then the target pixel represents a new object and a new
object label is used. If only one neighbor is labeled, then label the target pixel
with the same label. If more than one neighbor has been labeled: if they are
labeled with the same label, label the target pixel with that label; if they are
labeled with different labels, then use the label from one neighbor while insuring
that an alias equal to the labels from the other neighbors exist in the table. The
image is traversed once, processing each pixel one at a time until all the pixels
have been processed and assigned a label.

This implementation does not allow an object pixel to be on the outer shell (one
pixel in width) of the image. Furthermore, the pixels in this outer shell are
disqualified as target pixels and are explicitly set to the background value. Since
the filtering module, which precedes the region definition, contains a two-step
kernel process, unless the kernel is one pixel wide, it is guaranteed that the image
will have a border of undefined data (set to zero) greater than one pixel. Thus,
when the image is traversed to group neighboring pixels, a faster single looping
construct can be used rather than the slower traditional double looping construct
(one for rows and one for columns). And since the outer shell will never have a
target pixel, when neighboring pixels of a target pixel (not on the outer shell) are
accessed, special cases at the boundary are avoided.

The initial features are not dependent on spatial relationships between pixels
within the same object (or ROI) and can be calculated incrementally. Thus, as
each target pixel is visited and assigned a label, its contribution to the features is
calculated and stored on the ObjectEntry structure. The output of this module,
regions, is list of objects or a linked list of ObjectEntry structures. This linked
list of objects may contain a linked list of aliases for each object using the
AliasEntry structure. The label value associated to the object, a bounding box
around the object, initial features for the object, and a ranking metric (used in to
rank the objects) completes the members on an ObjectEntry structure. The
structure used to store the initial features, SomeFeatures, is used to store the
incremental values composing the feature until the entire object is defined. These
incremental features are changed (consisting of a normalization where
appropriate) to represent the features defined in the specification — centroid, area,
perimeter, mean, and variance.

If the features were not calculated incrementally, then the ROIs must be traversed
after grouping pixels into ROIs to calculate the features. This would require
multiple passes of the image, once to segment the pixels, and once to calculate the
features. Thus, this incremental calculation eliminates the need for multiple
passes and increases the speed of the baseline implementation.

An object entry link is formed when more than one object is found in the image

where each entry on the list is a distinct object in the image. Whenever two
objects are found to be connected, they are merged (associated together where one

B-53

represents an alias of the other). This is achieved by deleting one of the merging
objects from the object list and creating an alias with the same label as the deleted
object onto the alias list for the other merging object. The list regions is a linked
list of linked lists. One type of link is an object link and the other is an alias link.
While the image is being traversed and the ROIs are being connected, many
objects may be merged together. Each time a merge takes place, an entry is
deleted from the object list and an alias with the same label is added to different
alias list keeping track of these connections. The bounding box definition and the
initial feature calculations for each object are also combined before the object is
deleted from the object list and the alias is placed on the alias list. This entails
consolidating information on the ObjectEntry structures or merging the statistics
of the two objects to create statistics representative of the merged object. Once
all the pixels in the image have been assigned to an ROI, then a final computation
step is performed. This consolidation step is required to normalize the centroid,
mean, and variance since it is now possible to calculate the total number of pixels
in an ROI The area feature does not require the normalization step. This
consolidation step is also used to prune out objects that do not satisfy the criteria
driven by minArea and maxRatio. At the end of this module, regions contains a
list of objects where each entry on the list represents an ROI that passes the
minArea and maxRatio criteria. The members of the ObjectEntry structure
contain for each ROI:
1) the labels used in image O to label the ROI (one label plus any number of
alias labels contained in an alias linked list)
2) the bounding box around the ROI
3) initial features centroid, area, perimeter, mean, and variance, and
4) the ranking metric (mean *area) to be used when the ranking selection criteria
is applied.

The list regions is a list of lists - a list of the different regions, and a list of aliases
for a particular region.

Assumptions:

1) 8-neighbor definition is used

2) V and W images are all type ShortInt, and have the same dimensions
3) minArea >0

4) maxRatio > 0

5) selectNumber > 0

6) minArea < total area of input image V

7) selectNumber <2'®-2

Calls: addObject(), computeFeatures(), findConnection(), getLabel(), selectSubset(),
updateObject(),

(system)

Return: SELECT_REGIONS_SUCCESS
SELECT REGIONS ALLOC ERROR

#define MAX NUM_LABELS 2 - 2 /* max num of labels possible */

{ /* begin selectRegions */

B-54

***’(-’(-

This function assumes that the outer shell of the image can not
contain a target pixel. Furthermore, this function explicitly
disqualifies the pixels in the outer shell from being considered
as a target pixel. (The outer shell consists of the pixels on

the top row, bottom row, left most column, and right most column.)
This assumption is made to increase the speed of image access by
using a single loop over the image rather than two embedded loops.
Since the left and upper neighbors of each target pixel are

also accessed, there would be boundary cases introduced for

any target pixel that is on the outer shell. However, this design
does NOT change the results of the image understanding sequence
because this stage is preceded by the filtering component unless
the kernel has a dimension of one. This filtering component has a
two-stage kernel operation which requires the outer shell to be
zeroed out with the size of the shell equal to the dimension of
the kernel minus one. If the kernel dimension is larger than one,
then the outer shell required will be at least one pixel wide.

This function loops through all the pixels in the image W and tags
all pixels > thresholdLevel as “on target” pixels. These target
pixels are grouped so that contiguous adjacent form a single
object. For each target pixel determine the label to use for that
pixel. If the pixel is isolated, then it represents a new object.
If neighbors of the pixel are labeled, then the pixel belongs to
the same object as its neighbor. If more than one neighbor is
labeled with different labels, then objects must be merged
together into a single object (through an alias list). Thus, for
each target pixel, the neighbors above and to the left of that
target pixel are checked to determine whether any neighbors have
already been labeled. The neighbors that are checked are

depicted to the right where a ‘?’ denotes

a neighbor that is checked, an ‘x’ denotes ? 2?22

the target pixel being labeled, and a ‘-’ ? X -

denotes a neighbor that is NOT checked. - - -

Any pixel not in the outer shell has all of these neighbors, and
is not a boundary case. For example, all the pixels in the top
row are boundary cases and have no neighbors above them. Since
the outer shell is disqualified, none of these pixels will pass
as a target pixel. Hence a pixel in the outer shell (the
boundary cases) will never go through the neighborhood test.
Therefore, since it is guaranteed that there will be no boundary
cases, the implementation can take advantage of this and be
written efficiently and concisely (ignoring all boundary cases) .

The neighbors of a target pixel are checked to determine whether
the target pixel already belongs to an object, or is a new object.
If more than one of the neighboring pixels are labeled, then a
neighbor’s label is used. When objects are merged together, the
object and alias lists are updated to reflect this merge.

For faster pixel access, since the 2-dimensional image is stored
in row dominant order, an optimal single loop pixel pointer is
used to access the image from the left column to the right
column and from the top row to the bottom row.

B-55

Assumptions:

1) 8-neighbor definition is used

2) V and W images are all type ShortInt, and have the same
dimensions

3) minArea > 0

4) maxRatio > 0

5) selectNumber > 0

6) minArea < total area of input image V

7) selectNumber < 2% - 2

Set backgroundvValue = SHORTINT MIN, with labels starting at
backgroundvalue+1

The ObjectEntry structure is used for a linked list of linked
lists where the nextObject points to the next object in the list
and the aliasList points to an alias list for the current object.

* %k %k Ok N ok ¥ * o K ¥ ¥ Ok % * F

*

/

assert (V and W are all ShortInt with same dimensions)
assert (minArea > 0)

assert (maxRatio > 0)

assert (selectNumber > 0)

assert (minArea < total area of input image V)

assert (selectNumber < 2% - 2)

/*
* Set outer shell (one pixel wide) to nonTargetValue, disqualifying
* all pixels in outer shell from being a target value (which they
* will never be since this process is preceded by the filtering
* component - see comment above).
*
/

backgroundValue = SHORTINT MIN

nonTargetValue = backgroundvalue

loop over top row, bottom row, column=0, column=numColumns-1

W(pixel) = nonTargetValue
endloop

/
The connected component algorithm used is described above.

See the first algorithm described by R. Lumia, L. Shapiro, and
O. Zuniga in “A New Connected Components Algorithm for Virtual
Memory Computers,” Computer Vision, Graphics, and Image
Processing 22, pp. 287-300, 1983.

Traverse the filtered image line by line once, thresholding to
distinguish target pixels from background pixels. Once a target
pixel is found, determine which label to assign it by looking at
neighbors above and to the left of the current target pixel. If
no neighbors are labeled, then the target pixel starts a new
object. If only one neighbor is labeled, use that label. If
more than one neighbor is labeled (with different labels), then
objects must be merged into one object. When two objects merge,
keep track of this merge through the an alias list.

The list, regions, contains a list of all regions; along with a
list of the aliases associated to each region (if any). The list
is be used later to traverse through all the objects in the image
and finish the feature calculation for each object, and to rank
and cull the regions.

* % Ok ¥ % % Ok ok ¥ ¥ % F F ¥ * % % ¥ ¥ * ¥

B-56

* /
regions = NULL; /* an empty list to start with */

imageStart = &W(1,1)
imageEnd = &W(numColumns-1,numRows-2) /* don’t do last row */
/*

* Tt is faster to traverse the image with a single pointer using a
* gingle loop rather than two nested loops, but the centroid feature
* requires the row and column index. The variable pixelLocation is
* used to derive the row and column index from a single pixel index.
*

/

pixelLocation = numColumns

/* offsets for neighbors of the labeled image */

offsetTopLeftNeighbor = (-numColumns-1)
of fsetTopNeighbor = (-numColumns)
offsetTopRightNeighbor = (-numColumns+1)
of fsetLeftNeighbor = -1

ShortInt neighbor (4), newLabel
loop for imagePtr=imageStart, imagePtr <= imageEnd, imagePtr+=1 {
pixelLocation += 1;
if (*imagePtr > thresholdLevel) ({ /* pixel is “on target” */
/* Bny neighbors {(above or to left) of target pixel labeled? */

neighbor(0) = * (labelPtr+offsetLeftNeighbor) /* 12 3 */
neighbor(1l) = * (labelPtr+offsetTopLeftNeighbor) /* 0x - */
neighbor (2) = * (labelPtr+offsetTopNeighbor) /* - - - %/
neighbor (3) = * (labelPtr+offsetTopRightNeighbor)
if ((neighbor (0) == backgroundvValue) &&

(neighbor (1) == backgroundvalue) &&

(neighbor (2) == backgroundvValue) &&

(neighbor (3) == backgroundValue)) { /* new object */

newLabel = getLabel (pixelLocation, O, ®ions)

if (newLabel != backgroundValue) { /* valid label */
returnCode = addobject(newLabel,®ions,¤tObject)
if (returnCode == ADD_OBJECT_ALLOC_ERROR)
call errorMessage (“selectRegions: “)
return SELECT REGIONS_ALLOC_ERROR
} /* end if addObject error */

/* calculate partial feature values */
call updateObject (backgroundvValue, W, O, pixellocation,
currentObject)
} /* end valid label */
} /* end if new object */
else { /* one or more neighbors labeled */
returnCode = findConnection(backgroundvalue, neighbor,
®ions, &newLabel, ¤tObject) ;
if (returnCode != FIND_CONNECTION_ALLOC_ERROR)
call errorMessage (“selectRegions: “)
return SELECT REGIONS_ALLOC_ERROR

/* calculate partial feature values */
call updateObject (backgroundvValue, W, O, pixelLocation,
currentObject)
} /* end at least one neighbor labeled */

B-57

/*

add label to object image */

*labelPtr = newLabel;

} /* end if label is targetValue */

else {

/* add backgroundvValue to object image */

*labelPtr = backgroundvalue;
} /* end else label is backgroundvalue */

} /* end

/*

loop for each pixel */

* Finish calculating features and select ROIs.

*/
numberObj

/*
* Apply
*/

ects = computeFeatures (minArea, maxRatio, ®ions)

the ranking selection criteria to the selected ROIs.

call selectSubset (numberObjects, selectNumber, ®ions)

return SELECT REGIONS_SUCCESS

} /* end selectRegions */

B.10.2 addObject

Name:
Input:

Output:

Comment:

Calls:
Return:

addObject

newLabel label to assign to new object

regions pointer to linked list of objects to add new object to
regions pointer to linked list of objects with new object added

newObject pointer to new object added

This routine adds an objectEntry structure to the given linked list after creating
the new structure. The new object added to the list is prepended to the linked list
and is assigned the labelValue, newLabel. The new head of the revised list
regions and the newObject are both returned. This routine does not check to see if
an object with value newLabel already exists on the list. (Therefore if it is called
twice with the same label, two objects will be placed on the list with identical
label values.)

createObject()

ADD_OBJECT_SUCCESS

ADD OBJECT _ALLOC_ERROR

{ /* begin addObject */

/*

* Limitation: This routine does not check to see if an
* object with the newLabel already exists on the list.
* Create a new object, updating pointer to the new object.

*/
object = createObject();
if (¢ object)

call errorMessage(“addObject: “)
return (ADD_OBJECT__ALLOC_ERROR) ;

B-58

/*
* Assign the label to the new object, and add new object
* to the beginning of linked list. Update pointer to list.
*

/
object->labelValue
object->nextObject
if (*regions != NULL)

*regions->lastObject = object

newlabel
*regions

object
object

*regions
*newObject

return(ADD_OBJECT_SUCCESS);
} /* end addObject */

B.10.3 computeFeatures

Name: computeFeatures
Input: minArea minimum acceptable area value for an object
maxRatio maximum acceptable perimeter/area ratio for an object
regions list of objects to finalize initial feature calculations and
apply
the acceptance criteria defined by minArea and maxRatio to.
Output: regions with objects initial features finalized and acceptance
criteria
satisfied

Comment: This routine takes for input a linked list of objects. Features associated to each
object are finalized (the centroid, mean, and variance are normalized since it is
now possible to calculate the total number of pixels in an object). The area
feature does not require the normalization step. As the features are calculated, the
values are screened to see if they pass the selection criteria set by mindrea and
maxRatio. Any object that does not satisfy the minArea and maxRatio is removed
from the object list. The ranking metric (mean*area) is also calculated for each
object that passes to be used later on when the ranking criteria is applied. The
number of objects on the linked list of objects, regions, is returned.

Calls: deleteObject()

Return: numberObjects

{ /* begin computeFeatures */

/*
* Finish feature calculation, perform normalization as required.
*/
numObjects = 0;
currentObject = *regions;
while (currentObject != NULL) { /* loop for each object */
nextObject = currentObject->nextObject;

/*
* Normalize the features that require normalization that
* are used in the selection criteria.

*/

B-59

area = currentObject->initFeatures.area;
currentObject->initFeatures.mean =
currentObject->initFeatures.mean / area;

/*

* Apply part of the selection logic. If the object passes the
* test, compute the rest of the initial features. Otherwise,
* delete the object from the list.

*

/
if ({(minArea <= currentObject->initFeatures.area) AND

((currentObject->initFeatures.perimeter /
currentObject->initFeatures.area) <= maxRatio)) then {
numObjects += 1;

/* Finish calculating rest of initial features */

currentObject->initFeatures.centroidRow =
currentObject->initFeatures.centroidRow / area;

currentObject->initFeatures.centroidColumn =
currentObject->initFeatures.centroidColumn / area;

mean = currentObject->initFeatures.mean;

currentObject->initFeatures.variance =
(currentObject->initFeatures.variance / area) -
(mean * mean) ;

/* Calculate ranking metric (mean*area) */
currentObject->rankMetric =
currentObject->initFeatures.mean * area;
} else { /* delete object that doesn’t pass criteria */
deleteObject (currentObject, regions);
}

currentObject = nextObject;
} /* end while currentObject */

return numObjects
} /* end computeFeatures */

B.10.4 createAlias

Name: createAlias
Input: none
Comment: This routine allocates memory for an aliasEntry structure and initializes all

members to zero or null (for pointers). These aliasEntry structures are used to
compose alias lists for an object.

Calls:
(system) malloc()
Return: pointer to aliasEntry

{ /* begin createAlias */
allocate memory for aliasEntry structure
if alloc failed
call errorMessage (“createAlias: error allocating memory\n”)
return (NULL)
initialize members in aliasEntry structure
(pointers to null, label value to zero)

B-60

return (newAlias)
} /* end createRlias */

B.10.5 createObject

| Name: createObject

IInput: none

Comment: This routine allocates memory for an objectEntry structure and initializes all
members to zero or null (for pointers). The objectEntry structure is used to keep
track of each object or ROI found. There are members on the structure to: 1)
contain a bounding box definition around the object, 2) retain a label value
associated to the object, 3) maintain an alias list for the object if more than one
label is used for the object, and 4) keep incremental features (which become final
feature calculations later).

Calls:
(system) malloc()
Return: pointer to objectEntry

{ /* begin createObject */

allocate memory for objectEntry structure

if alloc failed
call errorMessage (“createObject: error allocating memory\n”)
return (NULL)

initialize members in objectEntry structure
(pointers to null, initialize feature values to zZero)

initialize bounding box values

newObject->box.upperLeft.column = INT_MAX
newObject->box.upperLeft.row = INT_MAX
newObject->box.lowerRight.column = -1
newObject->box.lowerRight.row = -1

return (newObject)
} /* end createObject */

B.10.6 deleteAlias

Name: deleteAlias

Input: aliasEntry pointer to aliasEntry

Comment: This routine frees memory associated to the aliasEntry structure. If a NULL
pointer is given, then the routine simply returns. Otherwise, the pointer is
assumed to point to an AliasEntry structure whose memory is freed.

Calls:
(system) free()
Return: none

{ /* begin deleteAlias */
while (aliasEntry != NULL)
nextAlias = aliasEntry->nextAlias
free aliasEntxy structure
aliasEntry = nextAlias
end /* while */

B-61

return

} /* end deletehAlias */

B.10.7 deleteObject

! Name:
| Input:

Output:
Comment:

Calls:

(system)
Return:

deleteObject

currentObject pointer to ObjectEntry to delete

listHandle pointer to linked list containing currentObject

listHandle pointer to linked list with currentObject deleted

This routine removes currentObject from the linked list and then frees memory
associated to the ObjectEntry structure. If a NULL pointer is given, then the
routine simply returns. Otherwise, the pointer is assumed to point to an
ObjectEntry structure whose memory is freed. The pointer to the linked list is
updated and returned (currentObject may be the first element on the list).
deleteAlias()

removeQObject()

free()

none

{ /* begin deleteObject */
if (currentObject != NULL) {

newList = *listHandle

/*

* Reset listHandle if object is the first element on the list.
*/

if (currentObject == *listHandle)

newlList = currentObject->nextObject;

/*

* Remove object from list then delete structure.

*/

removeObject (currentObject, listHandle)

/*

* Delete structures within the object entry structure first.

*/

deleteAlias (currentObject->aliasList);

free objectEntry structure

*]listHandle = newList
} /* end non-NULL pointer given */

return

} /* end deleteObject */

B.10.8 findConnection

Name:

findConnection

B-62

Input:

Output:

Comment:

Calls:

backgroundValue value used to denote a background pixel
neighbor 4 element array with label values for neighbors n0-n3

regions linked list of objects found so far
regions linked list of objects found so far (modified if two
objects are merged)
newLabel label that the pixel should be given
currentObject ~ object associated to the newLabel
This routine finds the connections between a pixel and its neighbors to determine
the label and object to assign to the pixel. If more than one neighbor is labeled
with different values, then the objects are merged (one object becomes an alias for
the other object. :
Assumptions: 1) at least one neighbor is labeled,
2) the image is being traversed from top row to bottom row
and from left column to right column, and
3) the neighbor index scheme as shown below where x is the
pixel being labeled and 0-3 are indices for the 4 element
array and for the neighbors of interest and ‘-’ denotes a

neighbor in any state (not of interest).
nl n2 n3
nd x -

With the assumptions above, minimize the operations (including the number of
neighbors to check), with the following algorithm: Check no first.
Case 1: n0 labeled
Set newLabel equal to n0’s label. Check n3.Ifn3 labeled (and not
equal to n0) merge objects for n0 and n3. Finished
Note that if n0 is labeled, there is no need to check nl or n2. If
either one is labeled, they would have the same label as n0. Need to
check n3 in case of a merge.
Case 2: n0 not labeled, check n2 next.
n2 labeled
Set newLabel equal to n2’s label. Finished
Note that if n0 is not labeled and n2 is labeled, there is no need to check
nl or n3. If either one is labeled, they would have the same label as n2.
Case 3: n0 and n2 not labeled, check nl next.
nl labeled
Set newLabel equal to n1’s label. Check n3. 1f n3 labeled (and not
equal to n1) merge objects for nl and n3. Finished
Case 4: n0, n1, and n2 not labeled, check n3 next.
n3 labeled
Set newLabel equal to n3’s label. Finished
Case 5: n0, nl, n2, and n3 not labeled — should never occur — assumption is
at least one of n0, nl, n2, or n3 is labeled (this special case is
handled in selectRegions)
findObject()
mergeObject()

B-63

Return: FIND_CONNECTION_SUCCESS
FIND_CONNECTION_ALLOC_ERROR

{ /* begin findConnection */

/*

*

Assumptions:
1) at least one neighbor is labeled,
* 2) the image is being traversed from top row to bottom row

*

* and from left column to right column, and
* 3) the neighbor index scheme as shown below where x is the
* pixel being labeled and 0-3 are indices for the 4 element *
array and for the neighbors of interest and ‘-’ denotes a *
neighbor in any state (not of interest).
* nl n2 n3
* ndo x -
* - - -
*/
ASSERT (! (neighbor(0) == backgroundvValue) AND
(neighbor (1) == backgroundValue) AND
(neighbor (2) == backgroundValue) AND
(neighbor (3) == backgroundvalue))

/*
* If n0 labeled, then only need to check n3
* (if n0 labeled and nl or n2 labeled, then n0=nl=n2;
* if n0 labeled and nl and n2 not, then if n3 need to merge)
*
/
if neighbor(0) != backgroundvValue ({
*currentObject = findObject (regions,neighbor (0))
*newLabel = (*currentObject)->labelvalue
if neighbor(3) != backgroundvalue {
returnCode = mergeObject (neighbor (3),backgroundvalue,
*currentObject, regions)
if (returnCode == MERGE_OBJECT_ALLOC_ERROR)
call errorMessage(“findConnection: *)
return FIND_CONNECTION_ALLOC_ERROR
} /* end n0 and n3 labeled, may need to merge */
} /* end no labeled */

/*
* n0 not labeled, check n2 first
* (if n2 labeled and nl or n3 labeled, then n2=nl=n3)

*/
elseif neighbor(2) != backgroundvalue {
*currentObject = findObject (regions,neighbor (2))
*newLabel = (*currentObject)->labelvValue

} /* end n0 not labeled, n2 labeled no merge case */

/*
* n0, n2 not labeled, check nl
* (if nl labeled and n3 labeled, then merge)

*

/

elseif neighbor (1) != backgroundvalue {
*currentObject = findObject (regions,neighbor (1))
*newLabel = (*currentObject)->labelvValue
if neighbor(3) != backgroundvalue {

returnCode = mergeObject (neighbor (3),backgroundvalue,
*currentObject, regions)
if (returnCode == MERGE_OBJECT_ALLOC_ERROR)
call errorMessage (“findConnection: ”)
return FIND CONNECTION_ALLOC_ERROR
} /* end n0 and n3 labeled, may need to merge */
} /* end n0,n2 not labeled, nl labeled, may need to merge */

/*
* n0, nl, n2 not labeled, check n3, no merge case.
*/
elseif neighbor(3) != backgroundvValue {
*currentObject = findObject (regions,neighbor (3))
*newLabel = (*currentObject)->labelValue
} /* end no,nl1,n2 not labeled, n3 labeled */

/* no, nl, n2, n3 not labeled, should never get here */

else {
errorMessage (
vfindConnection called with all no labeled neighbors!!\n”)

} /* end no0,n1,n2,n3 not labeled */

return

} /* end findConnection */

B.10.9 findObject

Name: findObject
Input: regions linked list of objects to look for object

labelValue label associated to object to find

Output: foundObject (see return below)
Comment: This routine looks on the linked list of objects for a label value. This label value

may be a label associated to an object or an alias associated to an object. If the
value is found the object associated to the label is returned and the object’s label
is returned (which is different than labelValue when labelValue is an alias of the
object). If the label is not found, a NULL pointer is returned.

Calls:
Return: foundObject object on regions associated to labelValue
NULL if object is not found
{ /* begin findObject */
foundObject = NULL
currentObject = regions
foundFlag = FALSE
/ *

* Find the object on linked list with the given label (or alias).

* Return the object associated to the given label/alias.

*

/

while ((! foundFlag) && (currentObject != NULL)) ({
if (currentObject->labelValue == labelValue) { /* found label */

foundFlag = TRUE
foundObject = currentObject

B-65

else { /* check aliases */
currentAlias = currentObject->aliasList

while ((! foundFlag) && (currentAlias != NULL)) {
if (currentAlias->labelValue == labelValue) ({
foundFlag = TRUE /* found label */

foundObject = currentObject /* object for alias */

}

nextAlias = currentAlias->nextAlias
currentAlias = nextAlias

} /* end while loop for aliases */

} /* end else check aliases */
nextObject = currentObject->nextObject;
currentObject = nextObject; /* go on to next object */

}

return (foundObject)
} /* end findObject */

B.10.10 getLabel

Name:
Input:

Output:

Comment:

Calls:

getLabel
pixelLocation single index specifying location of pixel to be labeled
0 labeled image

regions linked list of objects (with linked list of aliases per object)
0 updated if label was recycled
regions updated if label was recycled

This routine gets and returns a label value to use for a new object (a target pixel
NOT connected to another target pixel). An internal parameter, currentLabel, is
kept to store the label used last and is initialized to SHORTINT_MIN - the
background value. An Int type parameter is used for currentLabel so that it can
contain the value SHORTINT _MAX+1. When this parameter gets too large (is
larger that SHORTINT MAX), signaling that all labels available for a ShortInt
type value have been used, a label must be recycled. At which point, another
internal parameter, runQOutLabelsFlag, is set to signal that recycling is required.
Then, a label associated to an alias if found to be recycled. The linked list regions
is traversed until the first alias is found. This alias is recycled by removing the
alias from the alias list, relabeling the object image replacing the aliasLabel with
the object’s labelValue. Then the label for the alias can be reused. Note that the
bounding box for the object may be larger than the bounding box for just the alias.
Check for the case when the pixelLocation is within the bounding box. If this is
true, don’t relabel pixels to the right of the pixe/ (they haven’t been labeled yet).
For this particular case, it will only be the pixels on the same row as pixel and to
the right that have not been labeled. The image is being traversed row-by-row and
column-by-column so pixels above and to the left of pixel have been labeled and
pixels below and to the right have not been labeled.

If there are no more aliases available to recycle, return the
BACKGROUND_VALUE to flag this condition.
deleteAlias()

B-66

(system) floor()
Return: label label to use for pixel starting a new object

{ /* begin getLabel */
define MAX NUM_LABELS = SHORTINT_ MAX
define currentLabel type static Int

initialize currentlLabel = SHORTINT_ MIN
initialize runOutlLabelsFlag = FALSE

/*

* Get a new label to use for a new object.

*/
currentLabel++;
/*

* Does a label needs to be recycled?

* Yes if the currentlabel is larger than MAX NUM_LABELS or

* runOutLabelsFlag is TRUE. To recycle a label:

* 1) Find the first alias and remove it from the list,

* 2) relabel labeled object O so alias label is no longer used, and
* 3) remove alias’ entry from the alias list.

* Note that this portion of the code should not be invoked until

* SHORTINT MAX labels have been used, implying that regions is not

*

an empty list.

*/
if ({currentLabel > MAX NUM_LABELS) OR
(runOutLabelsFlag == TRUE)) {

runOutLabelsFlag = TRUE /* set flag first time */
foundalias = FALSE /* initialize alias found flag */
currentObject = *regions;

ASSERT (currentObject != NULL) /* List should not be empty */

while ((foundAlias != TRUE) AND /* loop for alias not found */
(currentObject != NULL)) { /* and for each object */
currentAlias = currentObject->aliasList;

if (currentAlias != NULL){ /* First Alias found */
foundAlias = TRUE /* Set found flag */

/
Relabel labeled object in O replacing aliasLabel with the

objects’ label. Note that the bounding box may be larger
than the bounding box for just the alias. 1It’s possible
for the pixel requiring a new label to be within the
bounding box. If this is true, don’t relabel pixels to
the right of the pixel (they haven’t been labeled yet).
For this particular case, it will only be the pixels on
the same row as pixel and to the right that have not been
labeled. The image is being traversed row-by-row and
column-by-column so pixels above and to the left of pixel
have been labeled and pixels below and to the right have
not been labeled. Once the object image O has been
relabeled, the alias label will be returned to be reused.

* % % % % F % % * * ¥ ¥ ¥ F*

*/
currentLabel
aliasLabel

currentAlias->aliasLabel
currentAlias->aliasLabel

B-67

objectLabel = currentObject->labelValue
get numColumns from image O
pixelRow = floor (pixellLocation/numColumns)

pixelColumn = pixelLocation - (numColumns * pixelRow)
assert (currentObject->box.lowerRight.row <= pixelRow)
if (pixelRow == currentObject->box.lowerRight.row) {

rowMax = pixelRow - 1
Loop for column = currentObject-sbox.upperLeft.column to

pixelColumn
if (o(column,pixelRow) == aliasLabel) then
o(column,pixelRow) = objectLabel

end loop for column
} /* end if some unlabeled pixel in bounding box */
else

rowMax = currentObject-s>box.lowerRight.column

Loop for row = currentObject->box.upperLeft.row to rowMax
Loop for column = currentObject->box.upperLeft.column to
currentObject->box.lowerRight.column
if (o(column,row) == aliasLabel) then
o{column, row) = objectLabel
end loop for column
end loop for row

/*
* Remove alias from list.
*/
nextAlias = currentAlias->nextAlias;
currentObject->aliasList = nextAlias;
currentAlias->nextAlias = NULL;
deleteAlias (currentAlias) ;
} /* end if currentAlias */
nextObject = currentObject->nextObject;

currentObject = nextObject;
} /* end while currentObject */

/* If there are no more aliases, return BACKGROUND_ VALUE */

if (foundalias == FALSE)
print warning “Max number of objects found, rest are ignored”
currentLabel = BACKGROUND_VALUE

} /* end need to recycle objects */

return (currentLabel)
} /* end getLabel */

B.10.11 mergeObject

Name: mergeObject

Input: label label value to merge with given object
background label used for background pixels (non target)
currentObject object to merge with given label
regions linked list of objects

B-68

Output:

Comment:

Calls:

Return:

currentObject with label added as alias if not already alias
regions linked list of objects, updated

This routine determines whether label needs to be added to the alias list of a given
object entry structure, currentObject. If label already exists in the definition of
currentObject, nothing happens. If Jabel doesn’t exist, then the object containing
label is added as an alias to currentObject (the two objects are merged together).
The initial features of currentObject and the bounding box are updated to reflect
this merge. If the object being merged (associated to /abel) has an alias list, this
list is added to the alias list for currentObject.
Assumptions: 1) label is not equal to the background value

2) currentObject '= NULL
createAlias()
deleteObject()
findObject()
MERGE_OBJECT_SUCCESS
MERGE OBJECT_ALLOC_ERROR

{ /* begin mergeObject */
#ifdef DEBUG

if label == background then error
#endif DEBUG

ASSERT (currentObject != NULL)

/*

* Is the label associated to currentObject (as it’s label or
* an alias of it’s label)? If yes, no merge required.

*/
isLabel = FALSE
if (currentObject->labelValue == label) /* is label THE label */
isLabel = TRUE
else {
currentAlias = currentObject->aliasList
while ((isLabel == FALSE) && (currentAlias != NULL)) ({
if (currentAlias->aliasLabel == label) /* label an alias? */
islLabel = TRUE
else {
nextAlias = currentAlias->nextAlias
currentAlias = nextAlias

} /* end else */

} /* end while alias check */
} /* end else */

~
*

1)

2)
3)
4)
5)

* ok ok % % K ¥ * *

*
~

The label is not already an alias/label of currentObject,
so merge objects:

find the object associated to label, labelObject

(then merge the objects currentObject and labelObject)

add label to currentObject’s alias list

add labelObject’s alias list to currentObject’s alias list
update the bounding box parameters to cover merged object, and
combine the partial feature calculations to reflect merged
object.

B-69

if (isLabel == FALSE) {
labelObject = findObject (*regions, label) /* find labelObject */

ASSERT (labelObject != currentObject)
/*
* Update bounding box for object.
*/

currentObject->box.upperLeft.column =
MIN (currentObject->box.upperLeft.column,
labelObject->box.upperLeft.column) ;
currentObject->box.lowerRight.column =
MAX (currentObject->box.lowerRight.column,
labelObject->box.lowerRight.column) ;
currentObject->box.upperLeft.row =
MIN (currentObject->box.upperlLeft.row,
labelObject->box.upperLeft.row) ;
currentObject->box.lowerRight.row =
MAX (currentObject->box.lowerRight.row,
labelObject->box.lowerRight.row) ;

/*

* Update initial feature values.

*
/

currentObject->initFeatures.centroidRow +=
labelObject->initFeatures.centroidRow;

currentObject->initFeatures.centroidColumn +=
labelObject->initFeatures.centroidColumn;

currentObject->initFeatures.area +=
labelObject->initFeatures.area;

currentObject->initFeatures.perimeter +=
labelObject->initFeatures.perimeter;

currentObject->initFeatures.mean +=
labelObject->initFeatures.mean;

currentObject->initFeatures.variance +=
labelObject->initFeatures.variance;

/*
* Delete labelObject from the linked list of objects before
* allocating newAlias (to minimize chance of an allocation

* error). Then store label for the labelObject as an alias
* for currentObject.
*/

aliasLabel = labelObject->labelValue

aliasList = labelObject->aliasList

labelObject->aliasList = NULL
call deleteObject (labelObject, regions)

/* create alias list for labelObject (which is now an alias) */
newAlias = createAlias ()
if (newAlias == NULL)
call errorMessage (“mergeObject:)
return MERGE_OBJECT_ ALLOC_ERROR
newAlias->aliasLabel = aliasLabel
newAlias->nextAlias = aliasList

/*
* Add labelObject’s alias list to beginning of currentObject’s

B-70

* alias list. If labelObject’s alias list is not NULL, £find
* the end to add currentObject’s alias list at the end.
*
/
nextAlias currentObject->aliasList
currentObject->aliasList = newAlias
while (newAlias != NULL) {
aliasList = newAlias
newBAlias = aliasList->nextAlias
} /* end if - find end of existing alias list */
aliasList->nextAlias = nextAlias

} /* end if merge objects */
return MERGE_OBJECT_SUCCESS
} /* end mergeObject */

B.10.12 removeObject

Name: removeObject

Input: currentObject pointer to objectEntry structure to remove from linked list
listHandle pointer to linked list containing currentObject

Output: listHandle pointer to linked list without currentObject - different when

currentObject was first element on list
Comment: This routine removes an objectEntry, currentObject, from the linked list of
objects. The linked list is updated so currentObject is no longer on the list and
currentObject no longer points to any other objects.
Calls:
Return: none

{ /* begin removeObject */

*
*+ Reset listHandle if object is the first element on the list.
*/
if (currentObject == listHandle)
listHandle = currentObject->nextObject;

/*

* Splice off object entry.

*/
nextObject = currentObject->nextObject
lastObject = currentObject->lastObject
if (lastObject != NULL)

lastObject->nextObject = nextObject
if (nextObject != NULL)
nextObject->lastObject = lastObject

/*
* Reset currentObject pointers from items on list to NULL.
*/

currentObject->nextObject

currentObject->lastObject

NULL
NULL

return
} /* end removeObject */

B-71

B.10.13 selectSubset

Name:
Input:

Output:

Comment:

Calls:
Return:

selectSubset

numObjects number of objects on linked list regions
selectNumber number of objects to retain after ranking them
regions linked list of objects to rank and cull

regions linked list containing selected subset of ROIs/objects
This routine applies the ranking selection logic on the list of objects in regions to
select a subset of the selectNumber objects in regions with the highest ranking
metric (mean*area). If there are fewer objects in the list than desired, return the
entire list without ranking them. If there are more objects than desired, build up a
rankedList equal to the number desired, sorting the elements as you build the list.
Then for additional candidates:
compare with the smallest element on the rankedList. If the candidate has a
smaller metric than the smallestRanked, delete the candidate. If the candidate has
a metric larger than the smallestRanked, find the location to insert the candidate,
delete the smallestRanked, reset the smallestRanked value. Repeat for the next
candidate (until there are no more candidates). At any one time, only
selectNumber of objects are kept on the rankedList.
Assumptions: 1) numObjects >= 0

2) selectNumber > 0

none

{ /* begin selectSubset */

assert (numObjects >= 0)
assert (selectNumber > 0)

/*

* If less number of objects than desired, then don’t bother
* ranking objects, let all of them pass.

*/

if (numObjects <= selectNumber)

/*

call e
“se
return

rrorMessage (
lectSubset: not many objects, no ranking done\n”)
/* objects NOT ranked */

* Rank list of objects from highest to lowest ranking metric value

*
*

*/

nex
las

tObject points to higher value
tObject points to lower value

initialize rankedList to null
initialize original list to regions

/*

* First initialize the list, build up list till you have
* gelectNumber objects: remove object from list, find place to
* insert object, insert object

*/

B-72

for index = 1, selectNumber
get currentObject from regions
remove currentObject from regions
find location on rankedList to insert currentObject
insert currentObject onto rankedList
end for /* till list is full */

/*
* List is full, now check each entry with smallest metric on list.
* If the next entry has a smaller metric, discard. Else find the
* location to place the next entry on the list, insert the entry,
* reset smallestObject, then continue.
*
/
smallestObject = first object on rankedList
get currentObject from regions
while (currentObject != NULL) { /* each object left on list */
nextObject = currentObject->nextObject;
removeObject (currentObject, regions)

/*
* case 1: current object metric <= smallest object metric
* delete object - have enough on list already
*/

if (currentObject->rankMetric <= smallestObject->rankMetric) {
deleteObject (currentObject, regions)
}

/*
* case 2: smallest < current
* find place to insert in list, drop smallest
*/
else {
find place to insert in rankedList
insert currentObject onto rankedList
delete smallest element on rankedList
reset smallest element of rankedList
}
/* go to next element */
currentObject = nextObject;
} /* end while there’s an object on the list */

return
} /* end selectSubset */

B.10.14 updateObject

Name: updateObject

Input: backgroundValue value/label associated to a background pixel
amplitude image image to use to calculate mean and variance features
labeled image image with labeled objects
pixelLocation single index associated to the pixel location to use
thresholdLevel above this value, pixels are “on target”
currentObject object that the pixel is being assigned to

|
to update initial features and bounding box
B-73

Output: currentObject object with features and bounding box updated for

pixel location given
Comment: This routine incrementally updates the initial features and the bounding box for

currentObject, the object that contains the pixel given.

Assumptions:

1) amplitude image and labeled image have the same dimensions

2) pixelLocation is a single index corresponding to a valid coordinate in
2-dimensions, specifically the labeled image

3) the currentObject is the correct object associated to pixelLocation

4) the filtered image is being overwritten by the labeled image and the image
is traversed top row to bottom row and left column to right column.

5) any pixel in the filtered image is considered a target pixel if the value is >
thresholdLevel; otherwise, it is considered a background pixel.

6) there are no target pixels on the outer shell one pixel wide.

Note that for the perimeter calculation, (determining whether the pixel is 8-
adjacent to background pixel ?), since the target pixels cannot be on the outer
shell of the image, the locations for the labeled image for an 8-adjacent neighbor
are all valid offsets — no boundary cases occur — relative to location (column,row).

Calls:
(system) floor
Retum: none

{ /* begin updateObject */

assert (amplitude image and labeled image have same dimensions)
assert (pixelLocation valid location in labeled image)

/*

* Determine row and column from pixelLocation.
*/
row = floor(pixellocation / numColumns)

column = pixellocation - row * numColumns

/*
* Update bounding box for object.
*
/
currentObject->box.upperLeft.column =
MIN (currentObject->box.upperLeft.column, column);
currentObject->box.upperLeft.row =
MIN (currentObject->box.upperLeft.row, row);
currentObject->box.lowerRight.column =
MAX (currentObject->box.lowerRight.column, column);
currentObject->box.lowerRight.row =
MAX (currentObject->box.lowerRight.row, row);

/*

* Update the initial features.

*/

currentObject->centroidRow += row;
currentObject->centroidColumn += column;
currentObject->area += 1;

currentObject->mean += amplitude (column, row) ;

B-74

currentObject->variance += (amplitude (column, row) *

amplitude (column, row)) ;

Is pixel 8-adjacent to background pixel ?

Since the target pixels cannot be on the outer shell of the image,
the locations for the labeled image below are all valid offsets
relative to location (column,row). However, since the filtered
image is being overwritten by the labeled image, the pixels above
and to the left of the current pixel have been labeled, and the
pixels below and to the right of the current pixel have NOT been
labeled. To check for a perimeter pixel: if a labeled neighbor is
equal to the background value, or a non-labeled neighbor <=
thresholdLevel THEN the current pixel is a perimeter pixel. (There
are boundary conditions at the (numCols-2) column of the image
where the next pixel is already labeled as a background pixel; and
at the bottom row of the image where the pixels below have already
been labeled as background pixels. Furthermore, any pixel on

since they are next to a background pixel.)
Once it is determined that one of the 8-adjacent pixels is a

% % ok % & ok ¥ * ok * ¥ ok F H ¥ * F ¥ ¥ *

checked.
*/
perimeterFlag = FALSE

if ((labeled(column-1,row-1) == backgroundvValue) |}
(labeled (column, row-1) == backgroundValue) |
(labeled (column+1l,row-1) == backgroundvalue) ||
(labeled (column-1, row) == backgroundvalue))

perimeterFlag = TRUE

check pixels to the right and below the pixel with the thresholdLevel
setting the perimeterFlag to TRUE if any are > thresholdLevel

if (perimeterFlag == TRUE)
currentObject->perimeter += 1;

return
} /* end updateObject */

B.11 FEATURE EXTRACTION MODULE

B.11.1 extractFeatures

Name: extractFeatures
Input: V image input image
O image labeled image

distanceShort short distance for GLCM descriptors
distanceLong long distance for GLCM descriptors

regions list of objects containing alias lists, bounding box, and
initial features for each object

Output: regions (NULL - objects are removed from this list and put on the
list of features)
features list of features containing entire set of feature values

B-75

these boundary conditions, are by definition, perimeter pixels

background pixel, the other adjacent pixels do not need to be

Comment;:

Calls:

(system)
Return:

This routine is the highest level routine for the Feature Extraction module
and provides an interface with the mainline. For each object on the regions list, a
feature structure is created and the additional GLCM descriptors are calculated
and stored on this FeatureEntry structure. This is a total of sixteen additional
features (GLCM energy and entropy for each of two distances and four
directions). The other features previously calculated are also available from this
structure through a pointer. The features list has the same number of objects as
the regions list and contains the entire set of features calculated for a selected
object/ROI. Thus, the list of objects is emptied and a list of features is created

where each entry on the feature list contains a single object from the region list.
Assumptions:

1) distanceShort > 0

2) distanceLong > 0

3) distanceShort <number columns and number rows in V
4) distanceLong < number columns and number rows in ¥
5) distanceShort <= distanceLong

6) imageV and imageO are the same dimension
calculateDescriptors()

createFeature()

removeObject()

EXTRACT_FEATURES_SUCCESS
EXTRACT_FEATURES_ALLOC_ERROR

{ /* begin extractFeatures */

/*

* Verify assumptions.

*/

assert (distanceShort > 0)

assert (distanceLong > 0)

assert (distanceShort < number columns and number rows in V)
assert (distanceLong < number columns and number rows in V)
assert (distanceShort <= distanceLong)

assert (imageV and image0 have the same dimensions)

/

* ¥ % ¥ Ok % X ¥ F F * ¥ ¥ * *

*/

Loop for each object found
Loop for each distance, distanceShort and distanceLong

Loop for each direction, 0, 45, 90, 135 degrees
calculate GLCM energy and entropy
add all feature values onto features

end loop

end loop
end loop

Temporary memory is required to calculate the sum and difference
histograms. Rather than have that memory allocated and freed for
each call to calculateDescriptors, have the arrays as static
memory in calculateDescriptors. (Or allocate it once here and
pass the buffers to calculateDescriptors to be used.)

initialize features to NULL

B-76

object = *regions
Loop for each object on regions list

newitem = create featureEntry for output features
if (error allocating memory for featureEntry) {
call errorMessage (“extractFeatures: error allocating memory\n”)
return EXTRACT_FEATURES_ALLOC_ERROR
} /* end alloc error */
Loop for distanceShort and distanceLong
/* for 0 degree direction (horizontal) */
dx = distance
dy = 0
call calculateDescriptors(V, O, object, dx, dy,
&energy, &entropy)
£ill in descriptors for distance and 0° onto newitem
/* for 45 degree direction (right diagonal) */
dx = distance
dy = distance
call calculateDescriptors(V, O, object, dx, dy,
&energy, &entropy)
£fill in descriptors for distance and 45° onto newitem
/* for 90 degree direction (vertical) */
dx = 0
dy = distance
call calculateDescriptors(V, O, object, dx, dy,
&energy, &entropy)
fill in descriptors for distance and 90° onto newitem
/* for 135 degree direction (left diagonal) */
dx = - distance
dy = distance
call calculateDescriptors(V, O, object, dx, dy,
&energy, &entropy)
fill in descriptors for distance and 135° onto newitem
End loop for distances
nextObject = object->nextObject
removeObject (object, regions)
newitem.objectPtr = object /* keep access to initial features */
object = nextObject

End loop for objects

return EXTRACT_FEATURES_SUCCESS
} /* end extractFeatures */

B.11.2 calculateDescriptors
Name: calculateDescriptors
Input: V image input image for histogram calculations
O image labeled image to define object
object ObjectEntry defining object
distanceColumn column distance (defining distance & direction)
distanceRow row distance (defining distance & direction)
Output: energy GLCM energy for given distance & direction
entropy GLCM entropy for given distance & direction

B-77

Comment: This routine calculates the GLCM energy and entropy for a given object and a
given distance. This is done be using the sum and difference histogram method
described in [AAEC-1].

Calls: isPixelObject()

(system)

Return: none

} /* begin calculateDescriptors */

static array sumHistogram[NUM_HISTOGRAM_LEVELS],

differenceHistogram[NUM_HISTOGRAM LEVELS]

initialize entropy and energy to 0.0

if the distance cannot fit into the bounding box for the object
return (no pixels at that distance in object, so values are 0)

/*

* Initialize the histogram arrays to zero.

*/

initialize sumHistogram to 0
initialize differenceHistogram to 0

/

Calculate the sum and difference histograms for an object, where
the histograms are incremented for each pixel that is part of the
object with a corresponding pixel (dx, dy) away that is also part
of the object. For all pixels satisfying these conditions,
calculate the sum and difference and add to the histograms.
Calculate sumOffset and diffOffset which are offsets required to
guarantee that the bin index will be a positive number (within the
bounds expected) .

* % ok kK % *

*

*
/
totalNumPixels = 0O
Loop over bounding box for object
If ((isPixelObject(x,y,0,object) AND
(isPixelObject (x+dx,y+dy,0,0bject)) Then
sumHistogram([v{x,y) + v(x+dx,y+dy) + sumOffset]) += 1
differenceHistogram(diffOoffset + vi(x,y) - v{(x+dx,y+dy)) += 1
totalNumPixels += 1
Endif legal pixel address
End loop for bounding box for object

/*
* Normalize sumHistogram and differenceHistogram and
* calculate descriptors from sumHistogram and differenceHistogram

*/

energysS = 0
energyD = 0
entropy = 0
energy = 0
if (totalNumPixels > 0) ({ /* there are values in histograms */
Loop for i = 0, numHistogramLevels
/*

* If sumHistogram = 0 or differenceHistogram = 0, then there
* is no contribution for that element in the histogram, only
* positive values have a contribution. Then never take

B-78

* log(zero) so no need to check for this case.
*
/ .
if (sumHistogram(i) > 0) {
sumHistogram(i) = sumHistogram(i) / totalNumPixels
entropy = entropy - sumHistogram(i) * log (sumHistogram(i))
energyS = energyS + sumHistogram(i) * sumHigtogram(i)
} /* end sumHistogram bin positive * /
if (differenceHistogram(i) > 0) {
differenceHistogram(i) = differenceHistogram(i) /
totalNumPixels
entropy = entropy - differenceHistogram(i) *
log (differenceHistogram(i))
energyD = energyD + differenceHistogram(i) *
differenceHistogram(i)
} /* end differenceHistogram bin positive */
End loop for i
energy = energyS * energyD
} /* end if there are values in histograms */

return
} /* end calculateDescriptors */

B.11.3 createFeature

Name: createFeature
Input: none
Comment: This routine allocates memory for a featureEntry structure which is used to store

all the features calculated for each object or ROI found. The pointer members in
this structure are initialized to NULL, the other members are not initialized.

Calls:
(system) malloc()
Return: pointer to featureEntry

{ /* begin createFeature */
allocate memory for featureEntry structure

if alloc failed
call errorMessage (“createFeature: error allocating memory\n”)

return (NULL)

/*
* Tnitialize pointers to NULL.
*/
newFeature->nextFeature = NULL
newFeature->objectPtr = NULL

initialize entropy and energy values to a negative value (easily
recognized on output as an error since these values are positive}.

return (newFeature)
} /* end createFeature */

B.11.4 deleteFirstFeature

Name: deleteFirstFeature

B-79

Input:
Comment:

Calls:
(system)
Return:

pointer to feature list .
This routine frees memory associated to the featureEntry structure. It is assumed

that a non-NULL valid pointer to a FeatureEntry structure is given. The
memory associated to the first feature on the list is freed (After the ObjectEntry
structure is freed) and the feature list pointer is updated.

deleteObject()

free()

none

{ /* begin deleteFirstFeature */
assert (featureList and *featurelList)

featureEntry = *featureList
*featurelList = featureEntry->nextFeature
/*

* Delete the ObjectEntry structure

*/

if (featureEntry->objectPtr != NULL)
deleteObject (featureEntry->objectPtr)
free featureEntry structure

return

} /* end deleteFirstFeature */

B.11.5 isPixelObject

Name:
Input:

Comment:

Calls:
(system)
Return:

isPixelObject

column column coordinate of pixel to test

row row coordinate of pixel to test

0 labeled image O

object ObjectEntry structure for object in question

This routine checks a pixel location in labeled image O to determine whether that
location is part of the object represented by objectEntry object. The return value
is IS_PIXEL_OBJECT_TRUE if the pixel is part of the object (i.e., has a label
equal to the object’s label or an alias of the object’s label). Otherwise, an
IS_PIXEL OBJECT_FALSE is returned.

Assumptions:

1) Ois not NULL

2) column and row are within the bounds of the O image

3) object is not NULL

IS_PIXEL OBJECT TRUE
IS _PIXEL_OBJECT FALSE

{ /* begin isPixelObject */
assert (O != NULL)
assert (column and row are within bounds of O dimensions)
assert (bounding box for 0 is wvalid

(fits within the dimensions of imageO))

B-80

/*

* Tnitialize return value to FALSE and get the label value
* at the coordinate of interest.

*/

foundFlag = IS_PIXEL_OBJECT_FALSE

/*
* If the pixel location is outside of the object’s bounding box,
* then the pixel is definitely NOT part of the object.
*/
if column and row outside bounding box
return(IS_PIXEL_OBJECT_FALSE)

/*

* Check object’s label first, then check aliases.

*/

labelValue = o(column, row)

if (object->labelvalue == labelValue) { /* found label */
foundFlag = IS_PIXEL OBJECT_TRUE

else { /* check aliases */
currentAlias = object->aliasList
while ((! foundFlag) && (currentAlias != NULL)) {
if (currentdlias->labelValue == labelvalue) { /* found label */
foundFlag = IS_PIXEL_OBJECT_TRUE)
}

nextAlias = currentAlias->nextAlias
currentAlias = nextAlias
} /* end while loop for aliases */
} /* end else check aliases */

return (foundFlag)
} /* end isPixelObject */

B.12 RETURN CODES

This section lists all of the return codes for each function listed in the previous sections. Note that the
codes are prefixed by the name (possibly abbreviated) of the function. The return code from the mainline
is DIS_IMAGE_UNDERSTANDING_SUCCESS (FALSE), and is
DIS_IMAGE_UNDERSTANDING_ERROR (TRUE).

ADD_OBJECT _SUCCESS
ADD_OBJECT_ALLOC_ERROR

DILATE AND_SUBTRACT SUCCESS
DILATE_AND SUBTRACT_ALLOC_ERROR

EXTRACT_ FEATURES_SUCCESS
EXTRACT_FEATURES_ALLOC_ERROR

FILTER IMAGE_SUCCESS
FILTER_IMAGE_ALLOC_ERROR

FIND_ CONNECTION SUCCESS
FIND_CONNECTION_ALLOC_ERROR

IS_PIXEL_OBJECT_TRUE
IS_PIXEL OBJECT_FALSE

MERGE_OBJECT SUCCESS
MERGE_OBJECT ALLOC_ERROR

READ_INPUT_ SUCCESS
READ_INPUT_ALLOC_ERROR
READ_INPUT INVALID INPUT PARAMETER
READ_INPUT INVALID KERNEL
READ_INPUT_KERNEL_NOT_ ODD
READ_INPUT_KERNEL_TOO LARGE
READ_INPUT OPEN FILE ERROR
READ_INPUT_READ FILE_ERROR
READ_INPUT_CLOSE_FILE_ERROR

READ_SHORT INT IMAGE_SUCCESS
READ_SHORT_INT IMAGE_ALLOC_ERROR
READ_SHORT_INT IMAGE_INVALID_DIMENSIONS
READ_SHORT_INT IMAGE_READ ERROR
READ_SHORT_INT IMAGE_INVALID DATA

READ_UCHAR_IMAGE_SUCCESS
READ_UCHAR_IMAGE_ALLOC_ERROR
READ_UCHAR_IMAGE_INVALID DIMENSIONS
READ_UCHAR_IMAGE_READ ERROR

SELECT_REGIONS_SUCCESS
SELECT_REGIONS_ALLOC_ERROR

WRITE_OUTPUT_ SUCCESS
WRITE_OUTPUT_OPEN_FILE_ERROR
WRITE_OU’I‘PUT_WRITE_FILE_ERROR
WRITE_OUTPUT_CLOSE_FILE_ERROR
If
/*

* Done

*/

Return

B-82

Appendix C: DIS Benchmark C Style Guide
C.1 PURPOSE

The purpose of this document is to define one style and set of standards and guidelines for
generating C language software for the Data-Intensive Systems (DIS) Benchmarking Project. It is
intended that software developed according to this style and set of standards be correct and easy to
maintain. In order to attain these goals, the software should:

have a consistent style;

be easy to read and understand;

be portable to other architectures;

be free of common types of errors; and

be maintainable by different programmers.

Throughout this manual the rules of style will be referred to as either standards or guidelines. A
standard is an absolute rule which should always be followed. A guideline is a rule which should always
or almost always be followed, but it either requires that a qualitative judgment be made or there are a few
cases where it would be acceptable (or even encouraged) to break the guideline.

For example, the fact that a copyright notice must be included in every program is a standard. This rule
should never be broken. The rule that functions really may not be longer than two pages in length is a
guideline ~there is no requirement that every function contain exactly some number of lines, but the
programmer needs to divide up a function into smaller parts when it starts to get "too long".

C.2 SCOPE

The scope of this document is C coding style; questions of design and functional organization are
beyond the scope of this document. Books on these subjects are readily available elsewhere. Of necessity,
these standards cannot cover all situations.

Coding styles for other languages used for DIS benchmarking, if any, will be developed separately, but
will be as consistent with this C style guide as possible for ease of transition.

C-1

C.3 FILE ORGANIZATION

C4 STANDARD: The following file-naming conventions will be used:
FILE-NAMING
CONVENTIONS e C source code files *.c

e header files *h

e make Makefile

e shared library * S0

C.5 STANDARD: ALL
SOURCE CODE FILES
MUST CONTAIN THE

Each source file must have one of the following copyright statements
at the beginning of the file.

APPROPRIATE /* Copyright 1999, Atlantic Aerospace Electronics
COPYRIGHT NOTICE Corp. */

/* Copyright 1999, The Boeing Corporation */

/* Copyright 1999, ERIM International, Inc. */
C.6 GUIDELINE: If functions are longer than about 2 pages, then the design of the

FUNCTION LENGTH
<2 PAGES

function should be questioned. Especially consider if more than one
function 1s involved or if sub-functions would be better put into
separate modules. When considering the length of the function,
comment blocks should not be included.

CJa
ONLY
FUNCTION
SOURCE FILE

GUIDELINE:
ONE
PER

Under normal circumstances, there should only be one function per
source code file. In certain cases, very short and tightly related
functions may be grouped together in one file.

C.38 STANDARD:
LINE LENGTH < 80
CHARACTERS

Lines of code must be less than 80 characters in length. Long lines
must be broken into smaller pieces, such that when the file is printed,
all portions of the code will print out legibly. It is recommended that
subsequent sections of a longer line be indented so that it is clear that
these are continuations of the line above. The length of a line
includes any commentary that follows the actual C code on the line,
and, as well, any white space that precedes the code as indentation.

C9 STANDARD:
SECTIONS MUST BE
ORDERED THIS WAY

The order of sections for a program, or source code, file is as
follows:

1. Prologue: Firstin the file is a prologue that tells what is in
that file. A description of the purpose of the objects in the
files (whether they be functions, external data declarations
or definitions, or something else) is more useful than a list
of the object names. A description of the method(s) used is
helpful for any complex function. Descriptions should not
be so detailed that maintenance of the prologue takes more
effort than is gained by increased understanding of the code
itself.

2. Includes: Any header file includes should follow the
prologue. If the include is for a non-obvious reason, the

C-2

reason should be commented. In most cases, system
include files like stdio.h should be included before user
include files.

. Defines: Any defines that apply to the file as a whole are

after the includes.

. Global Definitions: After the defines come the global

(external) data declarations.

_ Functions: The functions come last and, if there is more

than one, should be in some sort of meaningful order.

C-3

C.10 GUIDELINE: All functions in a given header file should be related to the same
HEADER FILE general function, i.e. declarations for separate sub-systems should be
ORGANIZATION in separate header files.
Example: all functions in the header file stdio.h either perform or
assist in the performance of input and output.
C.11 GUIDELINE: Within a header file, functions that perform related tasks should be
HEADER FILE grouped in the same section.
ORGANIZATION
Example: within the file stdio.h, all functions in the scanf family
should be placed together.
C.12 GUIDELINE: Avoid private header filenames that are the same as public header
HEADER FILE- filenames.
NAMING
C.13 GUIDELINE: Don't use absolute pathnames for header files. Use the <name>
HEADER FILE construction for getting them from a standard place, or define them
SPECIFICATION relative to the current directory.
C.14 GUIDELINE: The "include-path" option of the C compiler (-I on many systems)
HEADER FILE used in the Makefile is the best way to handle extensive private
SPECIFICATION libraries of header files; it permits reorganizing the directory
structure without having to alter source files.
C.15 STANDARD: Header files that declare functions or external variables must be
HEADER FILE included in the file that defines the function or variable. That way,
INCLUSION IN THE the compiler can do type checking and the external declaration will
FILE THAT DEFINES always agree with the definition.
THE FUNCTION
C.16 STANDARD: Put code like the following into each .h file to prevent accidental
HEADER FILE double-inclusion.
INCLUSION IN THE
FILE THAT DEFINES #ifndef EXAMPLE
THE FUNCTION #define EXAMPLE
.. /* body of example.h file */
#endif /* EXAMPLE */
Generally, the macro name should be the file name, all in capital
letters, with words separated by underscores, periods replaced by
underscores, and prefixed by DIS .
Example: dataBase.h would use DIS_ DATA_BASE_H.
C.17 GUIDELINE: Header files should contain all the necessary elements needed for its
HEADER FILE own compilation. Therefore, header files may be nested.
NESTING

C.18 VARIABLE DECLARATIONS

C-4

C.19 STANDARD:
VARIABLE
NAMING

All variable names must begin with a lowercase letter.

The words of a compound variable name should be separated by
capitalizing the first letter of every word except the first word, e.g.
someVariable. In some cases where it is clearer, variables may be
named by separating words with underscores, €.g. some_variable.

Function names are variable names, and should be assigned
accordingly.

No special provision is made for pointers, globals, et cetera. The name
and usage should be so clear that special prefixes or suffixes would only
confuse, rather than clarify.

C.20 STANDARD:
TYPE NAMING

Type names must begin with an uppercase letter.

The words of a compound type name should be separated by
capitalizing the first letter of every word, e.g. SomeType. In rare cases
where it is clearer, types may be named by separating words with
underscores, e.g. some_type.

C.21 STANDARD:
MACRO NAMING

Macro names must be all upper case separated by underscores, €.g.

#define WEEK_DAYS 7

C.22 GUIDELINE
: DO NOT USE
GLOBAL
VARIABLES

The use of global variables is strongly discouraged. It is conceivable,
however, that there will be cases where the use of global variables can
actually make a program more readable by not cluttering function calls.
Any use of global variables by a function should be documented in the
prologue.

C.23 STANDARD:
GLOBAL
VARIABLES
DECLARATION AT
TOP OF FILE

Any global variables must be declared at the top of a file, before any
function declarations. Variables which are global to only the functions
in a single file should be declared as "static".

C.24 GUIDELINE
:LOCAL
VARIABLE
DECLARATION

Variables should be declared with as local a scope as possible.

Note: C permits the declaration of variables within any block, e.g.,
within a "for" block; however declaration must be at the beginning of
the block.

C.25 STANDARD:
USE SYMBOLIC
CONSTANTS
INSTEAD OF
LITERALS

All quantities that must remain unchanged throughout a program must
be named using either the "#define" macro capability or a “const” type
variable. For example:

#define MAX CHANNELS 4096
const float pi 3.14159

The former is preferred in cases where use of the latter would resultin a
global variable.

C-5

C.26

STANDARD:

MACRO
DEFINITION

Macros that are used only in a single compiland should be defined at
the beginning of that compiland. Macros that have a more general scope
should be defined and documented in header files of appropriate scope.

C.27

GUIDELINE

NON-STATIC
VARIABLE
INITIALIZATION

NOT

IN

DECLARATION

Non-static variables must not be initialized in their declarations.
Instead, give a variable its initial value in a separate statement line just
before the variable is first used. This is because initialization within the
declaration statement only occurs once under the language definition of
Kemnigan & Ritchie; if the function is used more than once the variable
will not be re-initialized. The ANSI language definition requires that
automatic variables initialized in their declarations be reset every time
the function is entered, but we may not be able to guarantee the use of
an ANSI compiler.

C.28

STANDARD:

EXPLICIT +1 IN
STRING LENGTH

Character arrays used as strings, i.e., to hold ASCII text and terminated
by a null character) should have a defined length that explicitly includes
the "+ 1" character for the null string terminator.

DECLARATION
FOR\0 #define NAME_LEN 20 + 1
char name [NAME_LEN] ;
C.29 STANDARD: Each field in a structure must be declared on a separate line.
STRUCTURE
DECLARATION The structure must have a tag, named with the same format as a type.
The actual assignment of a structure to a variable must be done in a
separate statement.
typedef struct {
char name [NAME_LENI] ;
char author [AUTHOR_ LEN] ;
long number;
} Book;
Book goneWithTheWind;
C.30 STANDARD: o average avg
ggE NTIONAL e database db
ABBI REEVI ATIONS e data-intensive system dis
FOR cOMMON °* frequency freq
VARIABLES ¢ 1mage mg
e length len
® message msg
e number num
e pointer ptr
e position pos
e string str
C.31 GUIDELINE Include a comment on the same line as macro declarations.
: MACROS
C.32 GUIDELINE Place all macro definitions at the beginning of the file after the

C-6

: MACROS

prologue, or in a header file.

C.33 GUIDELINE
: MACROS

Place all shared macros in a header file.

C.34 GUIDELINE
: MACROS

Place parentheses around the parameters in the replacement text and
around the entire text whenever possible. For example:

#define NEXT(p) ((p)->_next)

C.35 FUNCTIONS

C.36 STANDARD:
PARAMETER LIST

Each parameter passed to a function should appear on a separate line in
the function declaration, with a short comment describing its function.

C.37 STANDARD:
PARAMETER LIST
INDENTATION

If the function and its parameter list is longer than one line, lines after
the first one will be indented from the left margin so that the second
line of the parameter list starts directly below where the parameter list
begins on the first line.

C.38 STANDARDS:
RETURN VALUES
MUST BE
EXPLICITLY
DECLARED

Return values must be explicitly declared.

The function declaration should return void if an actual value is not
being returned.

C.39 STANDARD:
RETURN VALUES

A function that returns information via one or more of its parameters
may return only status information in its name.

C.40 STANDARD:
PARAMETER
ORDER

The list of function parameters should have a definite order. The
standard for the C library functions is opposite from most other
languages and from most programmer's intuition. For example, the
string copy function, strcpy(out, in), takes the output parameter first
and then the input parameter. This makes sense if you think of the
ordering like you think of the ordering of an assignment statement. We
can't change the C library standard but for routines which we write, we
will use the more conventional parameter ordering of input, modified
(input and output), and finally output parameters.

C.41 STANDARD:
STATIC FUNCTION

Any function which is only called from other functions in the same file
should be declared "static".

C.42 TEMPLATE
FOR FUNCTION
DECLARATIONS

void funcName (int firstParameter, /*Comment 1st

param*/
int secondParameter, /*Comment 2nd
param*/
double thirdParameter, /* ... */
char fourthParameter) /* ... */
{ /* beginning of funcName() */

return;
} /* end funcName() */

C.43 STANDARDS:

The rest of the function, until the closing brace will be indented one

C-7

FUNCTION BODY

step (two or three spaces - do not use tabs). A beginning brace, "{",
opening the body of the function must be on a line by itself (with
comment) and left justified or at the end of the line which introduces
the block. Of course, any control statements will cause further
indentation from this basic indentation.

C.44 STANDARDS:
FUNCTION BODY

A single return statement must always be present with a parameter if
the function is not of type void. Even if the function has no return
value and, therefore the C language does not require a return, it is good
practice to use one. This can be useful for setting a break-point during
debugging.

C.45 STANDARDS:
FUNCTION BODY

A closing brace, "}", closing the body of the function must be on a line
by itself (with comment) and left justified.

C.46 STANDARDS:
FUNCTION
PROTOTYPE

Function prototypes must be generated for all functions generated.
The prototypes must include all variable types and names.

C47 COMMENTS

At one extreme, it is obvious that a program of any significant complexity that has no comments
is hard to read and maintain. At the other extreme, a program that is loaded with comments can
get tedious to read. If the comments are scattered around in the code with excessive white space,
the amount of code that can be seen on a typical 25-line monitor is insufficient for effective
viewing and/or editing. Therefore, it is recommended that:

C-8

C.48 GUIDELINE:
TEMPLATE FOR
FILE AND
FUNCTION
HEADER

If a file contains functions which are closely enough linked that when
one is modified it will probably be necessary to modify all or most of
the functions in the file, then the following header should be placed at
the beginning of the file and a normal block comment briefly
describing the function placed at the beginning of each individual
function.

/* Copyright 1999, Atlantic Aerospace Electronics Corp

/*
* File Name:
* Purpose:
* Documentation: (if appropriate)
*
* Revision History:
* Date Name Revision

* 02Jan99 Simon Birch Created

C.49 GUIDELINE:
FUNCTION
COMMENTS

Comments inside a function body should occur in only two forms:
block comments and line comments.

C.50 GUIDELINE:
BLOCK
COMMENTS

Block comments should precede cohesive blocks of code, and describe
the block fully. Code is more readable when comments are presented
in paragraph form prior to a block of code, rather than a line of
comment for a line or two of code. The idea is to not obscure the
readability of the code by interspersing comment lines. Comments are
most appropriate for cohesive blocks of code when they explain the
purpose of the block in accomplishing a cohesive task. This enables
the reader to understand the function being implemented. Thus the
reader will be able to quickly find the appropriate section of code
without getting bogged down in coding details for other sections of
code.

C.51 STANDARDS:
BLOCK
COMMENTS

Comment blocks should be preceded by a single blank line. Multiple-
line, block comments must have an asterisk character, "*", at the
beginning of each line of the block (after the first one which, of course,
must start with "/*"). The last line of the block comment is ¥/,

/*

* This is an example of a block comment. Note the
opening

* and closing lines, and the vertical alignment of the

* asterisks on each text line. Also note that there
will

* be one blank line before the comment block.

*/

C.52 STANDARDS:
BLOCK
COMMENTS

Indent block comments to the same level as the block being described.

C.53 GUIDELINE:
LINE COMMENTS

Line comments can augment, but not replace, block comments. They
should serve as special clarification on lines within a block to make
following the code simpler. They are especially useful for
commenting on variable and macro definitions and the like. They
should be left-justified at a column to the right of the code for easier
readability. In exception to this rule, comments for brackets should be
kept with the brackets.

if (x < y) |
x = doSomething() ; /* x=0 on failure */
y = doSomethingElse(z) ; /* assumes z<65536

*/

} /* end of if (x < y) */

C.54 STANDARD:
BRACKETS

No open- or close-bracket (‘{‘ or ‘}’) shall appear on a line by itself
without a comment identifying the block being opened or closed. For
example:

for (1 = 0; 1 < 10; 1++) {
X =x + 1;
} /* end of loop for 1 */

C.55 GUIDELINE:
FUNCTION
COMMENTS

Meaningful variable and function names can minimize the need for
comments. Using this approach decreases the chance of having the
code change but an associated comment not be updated to reflect the
code change.

C.56 STATEMENTS

C.57 STANDARD:
ONE STATEMENT
PER LINE

Every statement must begin on a separate line. "a = 2; b = 3;" is not
allowed.

C.58 GUIDELINE:

DO NOT USE GOTO
AND CONTINUE
STATEMENTS

"Goto" and "continue" statements are highly discouraged. The use of
"break" commands is discouraged except in "switch" statements
(where they are required).

status = SUCCESS;

i=0;

while ((string[i] != NULL) && (status ==SUCCESS)) {
transmitCharacter(stringli], &status);

} /* end of while */

1

wn

preferred over:

i=0;

while (string([i] != NULL) ({
transmit_character(string (i), &status);
if (status != SUCCESS) break;

} /* end of while */

C.59 GUIDELINE:
EXIT STATEMENT
DISCOURAGED

Explicit use of the "exit();" statement is discouraged, except for error-
handling functions.

C-10

C.60 GUIDELINE:

MAXIMUM 4
LEVELS OF
CONTROL
STRUCTURE
NESTING

Nesting of statements, "if", "for", "while", etc., should go no more than
4 levels. If more levels appear to be needed, consider use of a function
at one of the higher levels.

C.61 STANDARDS:

NULL
STATEMENTS

Null statements must include a comment line. For example, if the
"default:" case in a switch statement does nothing, put in a "default:"
label followed by a comment to the effect: /* no action */ followed by
the break statement.

C.62 STANDARD:

COMMENT

FOR

MISSING "BREAK"

IN SWITCH

If a particular case in a switch statement is meant to drop through to
the next case (i.e., it has the same effect), the fact that the earlier case
has no "break" statement should be explicitly noted with a comment.

switch(whichIsotope) {
case PU239 : /* same action as for PU240; no break
*/
case PU240 :
processPlutoniumIsotope () ;
break;
default :
break; /* if not PU 239 or 240, no action taken
*/
} /* end of switch (whichIsotope) */

C.63 STANDARD:

STATEMENT
BLOCKS

Statements that affect a block of code (i.e., more than one statement)
must either have the opening brace "{" at the end of the line containing
the control statement, or the opening brace must be on the line
immediately below and lined up with the first letter of the control
statement.

C.64 STANDARD:

STATEMENT
BLOCKS

The body of the block must be indented one step from the control
statement.

C.65 STANDARD:

STATEMENT
BLOCKS

The ending brace, "}", must be on a line by itself (with comment) and
at the same indentation level as the control statement.

C.66 EXAMPLE:

STATEMENT
BLOCKS

Examples: if (first < last) {
resultOne = first / 2;
resultTwo = last / 2;

} /* end of if */

else {
resultOne = last / 2;
resultTwo = first / 2;
} /* end of else */
do

{ status = doSomething();
} while (status == SUCCESS);

C.67 GUIDELINE:

"BLOCK"
SINGLE
STATEMENT

WITH

The programmer is encouraged to block off even a single statement
following a "while", "if", "else", etc. Using the curly braces "{}" is
required only when there is a block of more than one statement.
However, putting in the braces makes the scope of the control

C-11

STATEMENT statement very clear and helps to protect the code in the event that a
second line is added to the block if the single line contains a macro
which translates into more than one line of code.

if (someCondition == TRUE) {
thisVariable = thatVariable;
}

C.68 STANDARD: The increment and decrement operators, "++" and "--", are permitted
INCREMENT AND only in post-fix notation, e.g., "i++".

DECREMENT
OPERATOR ONLY
AS POSTFIX
C.69 GUIDELINE: The increment and decrement operators, "++" and "--", should not
INCREMENT AND appear as a part of any other statement.
DECREMENT
OPERATORS NOT while (string[i] != NULL) {
IN OTHER doSomething() ;
STATEMENTS } I++;
is preferred over
while (stringli++] != NULL) {
doSomething () ;
}

C.70 GUIDELINE: Often a program will branch based on the success or failure of a
BRANCHING ON function call. It is clearer to break out the function call onto a separate
FUNCTION CALL line followed by a new line containing the conditional statement:

ptr_FileHandle = fopen("some_file", READ_ONLY);
if (ptr_FileHandle == NULL) { '

printf ("Could not open file; program
terminating.");

terminateApplication() ;

else {
doSomething () ;
}

is easier to understand than:

177]

if ((fileHandle = fopen("some_file", READ_ONLY))==
NULL) {

printf ("Could not open file; program
terminating.");

terminateApplication() ;

else {
doSomething () ;
}

Generally speaking, if the return value is to be stored and utilized, the
call and the conditional should be separate statements. However, note
that when the return value is not needed after the conditional, the
function call may be issued within the conditional without a

C-12

“compound statement”.

The "fopen" example above demonstrates a style which helps to avoid
internal side effects. "Side effect" as used in this example refers to the
fact that the reader may focus on the "if(xxx == NULL)" aspect of the
statement and not fully realize that there is a call to "fopen()". The
other danger of this type of compound statement is the potential for
completely changing the meaning if the parentheses around the
"fileHandle = fopen()" part are left off.

C-13

C.71 EXAMPLE
TO EMPHASIZE
POTENTIAL
PROBLEMS OF
"COMPOUND"
CONDITIONAL
STATEMENTS

if (((fileCne = fopen("some_file", READ_ONLY)_ != NULL)
&&

((fileTwo = fopen("other_ file", READ ONLY)) !=
NULL)) |

doWhatEver () ;
}

would be much easier to understand if written as follows:

fileOne = fopen("some_file", READ ONLY);
if (fileOne != NULL) {
fileTwo = fopen("other_file", READ ONLY);
if (fileTwo != NULL) {
doWhatEver () ;
}

}

If the evaluation of the first half of the compound "and" fails, the
second part is not evaluated. Thus, this type of statement is not very
clear as to what really happens. The second example makes the action
much clearer.

C.72 GUIDELINE:
AVOID INTERNAL
SIDE EFFECTS

Expressions should not produce any internal side effects. Statements
like "while (string[i++] != 0)" should be avoided.

C.73 GUIDELINE:
COMPOUND FOR-
LOOP OPERATORS

C allows compound statements within the initialization and iteration
expressions of for-loops. All statements within these expressions must
be directly relevant to the operation of the loop, and not simply to
operations that need to take place within or during initialization of the
loop block.

C.74 STANDARD:
DO NOT USE
DEFAULT TRUTH
VALUE TEST

Do not default the test for non-zero, i.e.

if (£() != FAIL)

is better than

rif (£0)

even though FAIL may have the value 0 which C considers to be false.
An explicit test will help you out later when somebody decides that a
failure return should be -1 instead of 0. Use explicit comparison even
if the comparison value will never change.

C.75 OPERATORS

C.76 STANDARD:
USE SINGLE
SPACES AROUND
BINARY
OPERATOR

All operators which take two parameters must have a single space on
either side of the operator. This makes it very handy to use an editor to
search for a variable assignment; you need only search for "a =" and
not "a =" as well as "a=". It also makes the code more readable.

C.77 STANDARD:
NO SPACE

In contrast to binary operators, all unary operators (e.g., a minus sign
or the address operator, "&") should not have a space between the

C-14

FOLLOWING
UNARY OPERATOR

operator and the object.

C.78 GUIDELINE:
CONDITIONAL
OPERATOR
DISCOURAGED

The use of the ternary conditional operator, "?:" in the main program is
discouraged, primarily to make the code more readable. It can still be
used in macros.

if (abc > xyz) {
zOne = abc;

else {
z0ne = xyz;
}

is generally easier to follow than:

7]

zOne = (abc > xyz) ? abc : xyz;

C.79 STANDARD:
USE PARENTHESES
TO REMOVE
PRECEDENCE
AMBIGUITY

Where operator precedence must be known to determine the meaning
of an expression, it is required that you use parentheses to eliminate
any ambiguity which might arise from lack of knowledge of operator
precedence. For example, to increment the variable pointed to by the
pointer "imageData", use "(*imageData)++". This use of parentheses
makes it clear that the contents of location "imageData" is being
incremented and not the address itself.

C.80 WHITE SPACE

C.81 GUIDELINE

: USE OF
WHITESPACE FOR
READABILITY

Use vertical and horizontal whitespace judiciously to make the program
more readable. Indentation and spacing should reflect the block
structure of the code.

C.82 STANDARD:
VERTICAL
SPACING OF
CONDITIONAL
OPERATORS ON
SEPARATE LINES

A long string of conditional operators should be split onto separate
lines.

if (foo->next==NULL && totalCount<needed
&& needed<=MAXLLOT && serverActive (currentInput))

will be better as

if (foo->next == NULL
&& totalCount < needed
&& needed <= MAXLLOT
&& serverActive(current -input))

{...

Similarly, elaborate "for" loops should be split onto different lines.

for (curr = *listp, trail = pList;
curr != NULL;
trail = &(curr-s>next), curr = curr-snext) {
doSomething () ;
doAnotherSomething() ;

}

C.83 STANDARD:
SPACING FOR
PARENTHESES

Keywords that are followed by expressions in parentheses should not be
separated from the left parenthesis. Also put blanks after commas in
argument lists to help separate the arguments visually.

C-15

C.84 STANDARD:
NO TAB
CHARACTERS

Source code files should use only space characters for horizontal
whitespace. TAB markers should be converted to spaces before
delivery.

C.85 CONSTANTS

C.86 STANDARD:
NAMING
SYMBOLIC
CONSTANTS
UPPER CASE

IN

Symbolic constants must be in upper case. €.g., "TRUE".

C.87 GUIDELINE
CONSISTENCY

OF CONSTANT

DEFINITIONS

Constants should be defined consistently with their use; €.g. use 540.0
for a double instead of 540 with an implicit float cast.

C.88 CONDITIONAL COMPILATION

C.89 GUIDELINE

: USE OF
CONDITIONAL
COMPILATION

Conditional Compilation should only be used for controlling the
compilation of machine-dependent code, setting optimizations at
compile time, and debugging.

C.90 STANDARD:
DEFAULT OF
CONDITIONAL
COMPILATION

A conditional compiland controlling machine-dependent code should
default to an error. The default for a conditional compiland meant to
allow for code optimization should be un-optimized code.

C.91

PORTABILITY

C.92 GUIDELINE
MACHINE-
DEPENDENT CODE

USE

Only write machine-dependent code when necessary. Even if, for
example, a particular piece of hardware requires that a machine-
dependent routine be written, try to write any routines that support the
machine-dependent code machine-independently.

C.93
ANSI-
COMPATIBLE
CODE

STANDARD:

'All code should conform to the standard established by ANSI.

C.94 STANDARD:
MACHINE-

DEPENDENT CODE
IN SEPARATE FILE

Place all machine-dependent code in a separate file from all machine-
independent code.

C.95 STANDARD:
MACHINE-

DEPENDENT CODE
IN SEPARATE FILE

Machine-dependent code must be #ifdef'ed so that an informative error
message will result if the code is compiled on a machine other that
which it is designed for.

C-16

C.96 GUIDELINE Try not to assume ANSI. Even though AN SI-compliant code should be

: PORTABILITY written, if you know that many non-ANSI compilers will not
understand some code and you know of a more portable way of writing
the code which is still ANSI-compatible, do so.

C.97 GUIDELINE Be aware that the size of different data types may vary from platform to
: PORTABILITY platform. Be especially careful to avoid making assumptions about
integers and pointers.

C98 GUIDELINE Also be aware that the precision and storage format of floating point
: PORTABILITY numbers may vary from platform to platform.

C99 GUIDELINE Do not assume that software will always be executed on the machine
: PORTABILITY for which it is originally designed.

C.100 MISCELLANEOUS

C.101 STANDARD: Always check the return values of functions which return a special
ALWAYS CHECK value when an error occurs. If there really were no chance of an error
FUNCTION occurring, then the function would not have such a return value.
RETURN VALUE

C.102 GUIDELINE Use functions in libraries whenever possible instead of “re-inventing
: USE LIBRARY the wheel”.

FUNCTIONS WHEN

POSSIBLE

C.103 CONCLUSION

The standards and guidelines laid forth in this document should be followed zealously and in good faith
(do not, for example, ignore guidelines just because they do not say must). Remember above all that you
are working on a team of programmers, and should therefore labor to make your code as easy for another
to follow as possible in case another person has to modify your program. It is not unheard of for even the
person who writes sloppy code to not be able to follow it after a significant amount of time has passed.

C.104 REFERENCES

1. Los Alamos National Laboratory, C Style and Coding Standards for the SDM Project,
August 15, 1996.

2. Spencer, Keppel, and Brader, Recommended C Style and Coding Standards, Revision 6.0,
June 25, 1990.

3. The Boulder Software Group, Example C Style Guidelines, 1990.

#U.5. GOVERNMENT PRINTING OFFICE: 2000-610-055-10030

c-17

DISTRIPUTION LIST

addresses

CHRISTOPHER Jo FLYNN
AFRLJIFTC

26 ELECTRONICS PKWY
ROME NY 13441-4514

SMZA CORPORATION
1300-3 FLOYD AVE
ROME NY 13440-4600

AFRL/IFOIL
TECHNICAL LIBRARY
26 ELECTPONIC PKY
ROME NY 13441-4514

ATTENTION: DTIC-0CC

DEFENSE TEZCHNICAL INFO CENTER

3725 JOHN J. KINGMAN ROAD, STE 0944
FT. 3ELVOIP, VA 22060-6213

DEFENSE ADVANCED RESEARCH
PROJECTI ASENLY

3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

ATTN: NAN PFRIMMER

IIT FESEARCH INSTITUTE
201 MILL 57,

A0ME, NY 13640

AFIT ACADZ™MIC LIBRARY

AFIT/LDR, 2750 P.STREET

ARZA 3, 3LDG 542

WRIGHT-PATTERSON AF3 OH 45433-7765

AFRL/HESC~TDC
2698 6 STREET, 8LDS 190
WRIGHT-PATTERSON AFB OH 45433-7604

number
of conies

ATTN: S™DC IM PL

US ARMY SPACE % MISSILE DEF CMD
P.0. 30X 1509

HUNTSVILLE AL 35807-3301

TECHNICAL LIBRARY DO274(PL-TS)
SPAWARSYSCEN

53500 HULL ST

SAN DISGO CA 92152-5001

COMMANDER, CODF 4TLOOOD
TECHNICAL LIRZRARY, NAWC-WD
1 ADMINISTPRPATION CIRCLE
CHINA LAXZ CA 93555-6100

CDR, US ARMY AVIATION & MISSILE (C#D
REDSTOMNE SCIENTIFIC INFORMATION CTR
ATTN: AMSAM=RD-0R=-P, (DOCUMENTS)
REDSTONE ARSENAL AL 35%398-5000

REPORT LIZRARY

S PIs4

LOS ALAMOS NATIONAL LAIORATORY
LGS ALAMOS NM 37545

ATTN: D'SORAH HART
AVIATION 2PANCH SVC 122.10
FOZ10A, RM 931

300 INDEPENDEINCE AVE, SW
WASHINSTON DC 20591

AFIAC/MSY
102 HALL 3LVD, STE 315
SAN ANTONIO TX 78243-7016

ATTN: KAROLA M. YOJURISON
SOFTHARE ENGINEERING INSTITUTE
4500 FIFTH AVENUE

PITTS3URGH PA 15213

USAF/AIR FORCE RESEARCH LABORATORY
AFRL/VSOSA(LIBRARY~-3LDG 1103)

5 WRIGHT DRIVE

HANSCOM AF3 MA 01731-3004

DL~-2

ATTN: EILEEN LADUKE/D&6D
MITRE COPPORATION
202 3URLINGTON RD
3EDFORD MA 01730

2USD(PI/DTSA/DUTD

ATTN: PATRICK G. SULLIVAN, JR.
400 ARMY NAVY DRIVE

SUITE 300

ARLINGTON VA 22202

MR ROIJERT SRAYIILL
DARPA/JITO

2701 N FAIRFAX DR
ARLINGTON VA 22203-1714

DL-3

MISSION
OF
AFRL/INFORMATION DIRECTORATE (IF)

| The advancement and application of Information Systems Science
and Technology to meet Air Force unique requirements for

Information Dominance and its transition to aerospace systems to -

meet Air Force needs.

